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Concept of the particle swarms emerged from a simulation of the collective behavior of
social creatures. It gradually evolved into a powerful derivative-free optimization tech-
niques, now known as Particle Swarm Optimization (PSO) for solving multi-dimensional,
multi-modal, and non-convex optimization problems. The dynamics governing the move-
ment of the particles in PSO has invoked a great deal of research interest over the last dec-
ade. Theoretical investigations of PSO has mostly focused on particle trajectories in the
search space and the parameter-selection. This work looks into the PSO algorithm from
the perspective of the leader particle and takes into account stagnation, a situation where
particles are trapped at less coveted local optima, thus preventing them from reaching
more coveted global optima. We show that the points sampled by the leader particle satisfy
a simple mathematical relation which demonstrates that they lie on a specific line. We
demonstrate the condition under which for certain values of the parameters, particles stick
to exploring one side of the stagnation point only and ignore the other side, and also the
case where both sides are explored. We also obtain information about the gradient of
the objective function during stagnation in PSO. We provide a large number of machine
simulations which support our claims over several ranges of the control parameters. This
sheds light on possible modifications to the basic PSO algorithm which would help future
researchers to work with even more efficient and state-of-the-art PSO variants.

� 2014 Published by Elsevier Inc.
1. Introduction

Kennedy and Eberhart [29,18] introduced the concept of function optimization by means of a particle swarm in 1995
[10,18]. In the basic PSO scheme, a ‘‘swarm’’ of particles move around in the search space influenced by continually better
and improved positions discovered by other particles. PSO does not require any derivative information of the function to be
optimized, uses only rudimentary mathematical operators, and is conceptually very simple.

Since its inception in 1995, PSO has attracted a great deal of attention of the researchers all over the globe resulting into
nearly uncountable number of variants of the basic algorithm, theoretical and empirical investigations of the dynamics of the
particles, parameter selection and control, and applications of the algorithm to a wide spectrum of real world problems from
diverse fields of science and engineering [8,17,19,20,23,24,30–32,37].
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Being a stochastic search process, PSO is not free from false and/or premature convergence, especially over multi-modal
fitness landscapes. Quite often, PSO does not work very well, and may require considerable tuning of it’s parameters to spe-
cifically adapt to deceptive or intensely multi-modal optimization problems. For detailed analysis of parameter-tuning in
PSO, see van den Bergh [1], Trelea [34], Shi and Eberhart [33], Carlisle and Dozier [7], and Clerc [9]. A few more important
works in the field of PSO parameter-selection are [4,11,12,33].

Mathematical analysis of the dynamics of PSO has attracted a good deal of research interest over the last decade. Most of
such analytical studies that have so far been undertaken focuses on the trajectories of the particles and the choices of param-
eters that will guarantee the convergence and stability of the trajectories. These issues have been addressed by
[2,3,5,6,8,16,25,26,34,35]. The sampling distributions of the PSO were investigated in [9,21,27,28]. A stagnation-state anal-
ysis of the particle dynamics in PSO is an extremely important work which has not been comprehensively studied earlier.
[21] reported an analysis of the dynamic equation of the leading (globally best) particle. However, the authors only provided
a sufficient stable region for the parametric space of the PSO algorithm. The present work attempts to introduce some degree
of rigor on the dynamics of the so-called ‘‘fittest’’ particle in the stagnation state of a PSO algorithm with deterministic con-
trol parameters. In doing so, we arrive at some interesting conclusions. The points sampled by the leader particle satisfy a
mathematical relation which shows that they lie on a line. Moreover, the dynamics of the leader particle is wholly governed
by a parameter-dependent function which may take three different forms. If we assume that the swarm stays in the stag-
nation state forever, then this function may be seen to converge to 0. Some simple mathematics leads us to the conclusion
that this function, which we call gðtÞ, is never negative for certain choices of parameters. This case is significant in pinpoint-
ing the fact that if this happens, PSO loses it’s exploratory nature and hence, that these parameters may not be good choices
for PSO.

A dynamic, stagnation-state analysis of the leader particle also gives us some information about the relation between the
line on which the points sampled by the leader particle lie and the gradient of the objective function. Our work leads us to
the conclusion that the aforementioned line is either orthogonal to the direction of the gradient of the objective function or
has a descent direction. As will be shown, these two cases are intricately linked to the choice of the parameters and also to
the sign of the function gðtÞ.

The organization of the paper is as follows. Section 2 reviews the classical PSO algorithm. Section 3 is devoted to the
dynamic analysis of the leader particle during stagnation. Section 4 presents the analysis according to which we conclude
that the points sampled by the leader particle lie on a line. We also discuss the dynamic and limitative behaviors of the dom-
inant particle here. Section 5 gives the relationship between the dynamic behavior discussed and the choice of parameters.
We also see how restricting parameters to lie in certain sets (or their unions) imposes strict rules on the sign that gðtÞ pos-
sesses. This is carried forward in Section 6 to obtain valuable information about the relationship between the line on which
the points sampled by the leader particle lie and the gradient of the objective function. Section 7 provides some numerical
verification of the theory that we have put forth. The work ends with a short discussion about prospective future develop-
ments which seamlessly follow from the conclusions garnered forthwith.

2. The PSO algorithm

This section provides a brief introduction to the basic PSO Algorithm. PSO maintains a swarm containing m particles
where m 2 N is a constant. Each particle is characterized by a position, a velocity and a knowledge of it’s own neighborhood,
utilizing which it can share information about the hitherto best position it has attained with the other particles traversing
the experimental search space. This so-called ‘‘best’’ position is governed by the fitness value or simply fitness, which deter-
mines a particular particle’s progress towards coveted local or global minima of the objective function under consideration.
The particles traverse the search space dynamically and their movement is governed by the following fundamental
equations:
v ijðkþ 1Þ ¼ xv ijðkÞ þ C1ðpijðkÞ � xijðkÞÞ þ C2ðgjðkÞ � xijðkÞÞ ð1Þ
and
xijðkþ 1Þ ¼ xijðkÞ þ v ijðkþ 1Þ ð2Þ
where

(1) xiðkÞ ¼ ðxi1ðkÞ; xi2ðkÞ; . . . ; xinðkÞÞT is the position of the i-th particle at iteration k, and v iðkÞ ¼ ðv i1ðkÞ;v i2ðkÞ; . . . ;

v inðkÞÞT ; i ¼ ð1;2; . . . ;mÞ is the velocity of the i-th at iteration k.
(2) piðkÞ ¼ ðpi1ðkÞ; pi2ðkÞ; . . . ; pinðkÞÞ

T and giðkÞ ¼ ðgi1ðkÞ; gi2ðkÞ; . . . ; ginðkÞÞ
T are the personal best position and the neighbor-

hood best position of particle i at iteration k respectively. Their values are defined as follows:
piðkÞ ¼ argmin
06t6k

f ðxiðtÞÞ ð3Þ
and
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giðkÞ ¼ argmin
i2Ni

f ðpiðkÞÞ ð4Þ
where Ni is the neighborhood of particle i. It is important at this juncture to note that xiðkÞ;v iðkÞ; giðkÞ and piðkÞ are all vectors
of size n� 1.

(3) The parameters x; C1 and C2 satisfy the following for the canonical PSO algorithm:
x 2 ð0;1Þ; C1 � Uð0;/1Þ; C2 � Uð0;/2Þ ð5Þ
where x;/1 and /2 are often termed as the accelerating coefficients or inertia weights.

In practice, for any particular PSO application, the choice of Ni is extremely crucial and often bears deep linkages to the
purpose of the application in which the PSO algorithm is being used [22,29]. It is the population topology which ultimately
determines the choice of Ni. Relevant in this regard are works like [14,15], in which this problem of choosing Ni suitably is
studied empirically. Popular examples to be found in the literature are the gbest, lbest, and random topologies. In all our
subsequent treatments, we have used the gbest topology.

In the canonical PSO algorithm, the parameters x;C1 and C2 are randomly generated for each iteration, particle and
dimension. Our work analyses the dynamics of the leading particle in PSO with constant parameters. This considerably
reduces the mathematical complexity but, as we shall see, also gives us deep enough insights into the problem at hand to
strike a delicate compromise between the ease of calculation and the conclusions obtained. The parameters are seen to
satisfy:
x 2 ð�1;1Þ; C1 > 0; C2 > 0; 0 < C1 þ C2 < 2ð1þxÞ ð6Þ
thus providing us with a popular stable region of the PSO algorithm [2,8,13,34].

3. Dynamics of the leader particle

In this section, we provide a detailed analysis of the leader particle’s dynamics and solve it in the special case of stagna-
tion. At any instant of time t, the position and velocity updation equations are given by (1) and (2) as
v ijðt þ 1Þ ¼ xv ijðtÞ þ C1ðpijðtÞ � xijðtÞÞ þ C2ðgijðtÞ � xijðtÞÞ ð7Þ
and
xijðt þ 1Þ ¼ xijðtÞ þ v ijðt þ 1Þ: ð8Þ
Substituting (1) in (2), we obtain
xijðt þ 1Þ ¼ xijðtÞ þxv ijðtÞ þ C1ðpijðtÞ � xijðtÞÞ þ C2ðgijðtÞ � xijðtÞÞ: ð9Þ
Simplifying the above, we get
xijðt þ 1Þ ¼ ð1� C1 � C2ÞxijðtÞ þxv ijðtÞ þ C1pijðtÞ þ C2gijðtÞ: ð10Þ
Replacing t by ðt � 1Þ in (8) and substituting in (10), we get
xijðt þ 1Þ ¼ ð1� C1 � C2ÞxijðtÞ þxðxijðtÞ � xijðt � 1ÞÞ þ C1pijðtÞ þ C2gijðtÞ; ð11Þ
which immediately reduces to the difference equation model of the PSO algorithm, given by
xijðt þ 1Þ ¼ ð1þx� C1 � C2ÞxijðtÞ �xxijðt � 1Þ þ C1pijðtÞ þ C2gijðtÞ ð12Þ
where x 2 ð�1;1Þ and C1;C2 > 0. Now let us define the stagnation of the swarm as follows: If the whole swarm cannot
improve itself from the K-th iteration up to the ðK þMÞ-th iteration (M P 3), i.e. the global best position remains the same
for this period, then the swarm is said to be in stagnation during the iterations ðK;K þMÞ, and xiðKÞ is the stagnation point
where i is the leader particle.

Now, if the particle is in the stagnation state, then the global best position as well as the local best position of the leader
particle will be the stagnation point, i.e. piðtÞ ¼ giðtÞ ¼ xiðKÞ; t 2 ½K;K þMÞ. Thus, for the leader particle, we have the differ-
ence equation as
xijðt þ 1Þ ¼ a1xijðtÞ þ a2xijðt � 1Þ þ /xijðKÞ: ð13Þ
for t 2 ½K;K þMÞ, where / ¼ C1 þ C2; a1 ¼ 1þx� / and a2 ¼ �x
To analyze and solve this difference equation, let us construct a column vector
Yðt þ 1Þ ¼
xðt þ 1Þ � xðKÞ

xðtÞ � xðKÞ

� �
: ð14Þ
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Here, we have dropped the subscripts i and j for the sake of convenience, since we are interested in the analysis of the leader
particle only. Now the Eq. (13) can be written in an iterative functional form like the following,
Yðt þ 1Þ ¼ MYðtÞ; ð15Þ
where
M ¼
a1 a2

1 0

� �
:

We can also write
YðK þ t þ 1Þ ¼ ½M�tYðK þ 1Þ ð16Þ
Now the eigenvalues of the matrix M are given by
k1;2 ¼
a1

2
�

ffiffiffiffi
D
p

2
ð17Þ
where D ¼ a2
1 þ 4a2 ) a2

1 � 4x.
Case A: D > 0; k1; k2 are real, k1 – k2:
In this case, since the two eigenvalues are distinct and jk1;2j < 1, the matrix M will be diagonalizable and we can write

M ¼ PKP�1. So from Eq. (16) we can conclude
YðK þ t þ 1Þ ¼ PKtP�1YðK þ 1Þ ð18Þ
where
K ¼
k1 0

0 k2

" #
ð19Þ
Now, upon finding the change-of-basis matrix (that which maps from the standard basis to that of the eigenvectors) we can
write
P ¼
k1 k2

1 1

" #
ð20Þ

� �" #

and thus, PKtP�1 ¼ 1ffiffiffi

D
p
�ktþ1

1 þ ktþ1
2 k1k2 kt

1 � kt
2

�kt
1 þ kt

2 k1k2 kt�1
1 � ktþ1

2

� � . Hence from the above expression and the Eq. (18) we can conclude
that
xðK þ tÞ ¼ xðKÞ þ 1ffiffiffiffi
D
p kt

2 � kt
1

� �
½xðK þ 1Þ � xðKÞ� ð21Þ
Case B: D < 0; k1; k2 are complex conjugates:
In this case, too, the eigenvalues being different, the matrix M is diagonalizable. Here k1;2 ¼ jk1;2je�ih, where jk1;2j ¼

ffiffiffiffiffi
x
p

and h ¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffi
4x�a2

1

p
a1

. Here also Eq. (18) will hold and
PKtP�1 ¼ 1ffiffiffiffi
D
p xðtþ1Þ=2ðeiðtþ1Þh � e�iðtþ1ÞhÞ xðtþ2Þ=2ðe�ith � eithÞ

xt=2ðeith � e�ithÞ xðtþ1Þ=2ðe�iðt�1Þh � eiðt�1ÞhÞ

" #
Since sin h ¼ �
ffiffiffi
D
p

2
ffiffiffi
x
p , the above matrix relation along with the Eq. (18) boils down to
xðK þ tÞ ¼ xðKÞ þ sinðthÞ
sin h

xðt�1Þ=2½xðK þ 1Þ � xðKÞ� ð22Þ
Here, since sin h – 0 and jxj < 1
sinðthÞ
sin h

xðt�1Þ=2 ! 0 ð23Þ
as t !1.
Case C: D ¼ 0; k1 and k2 are real and equal:
Here, it can be easily shown that the algebraic multiplicity of the matrix M is less than its geometric multiplicity, the for-

mer being two and the latter one. So the matrix cannot be diagonalized. But, since the characteristic polynomial of M splits,
we can conclude that M is similar to a Jordan canonical matrix given by
J ¼
a1
2 1
0 a1

2

" #
ð24Þ
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i.e. M ¼ PJP�1 for some P. One eigenvector of M is given by v1 ¼
a1
2
1

� �
and another generalized eigenvector v2 can be found

out using the equation M � a1
2 I

� �
v2 ¼ v1. One particular solution of v2 (chosen arbitrarily) is v2 ¼

0
� 2

a1

� �
. So the change-of-

basis matrix is P ¼
a1
2 0
1 � 2

a1

� �
. Thus from Eq. (16) we can conclude
YðK þ t þ 1Þ ¼ PJtP�1YðK þ 1Þ; ð25Þ
where J is given by Eq. (24). Now,
PJtP�1 ¼
a1
2

� �t þ t a1
2

� �t �t a1
2

� �tþ1

a1
2

� �t�1 þ ðt � 1Þ a1
2

� �t�1 �ðt � 1Þ a1
2

� �t

" #
:

So, from Eq. (25) we can conclude that
xðK þ tÞ ¼ xðKÞ þ t
a1

2

� �t�1
½xðK þ 1Þ � xðKÞ�: ð26Þ
Here a2
1 ¼ 4x and since
jxj < 1; ja1j < 2: ð27Þ
Therefore, if the whole swarm is in the stagnation state, the positions sampled by the leader particle i during the stagnation
state follow the rule given below,
xiðK þ tÞ ¼ xiðKÞ þ gðtÞðxiðK þ 1Þ � xiðKÞÞ; t 2 ½0;MÞ; ð28Þ
where xiðKÞ is the stagnation point, and
gðtÞ ¼

ðkt
2�kt

1Þffiffiffi
D
p ; D > 0

t a1
2

� �t�1
; D ¼ 0

sinðthÞ
sin h ð

ffiffiffiffiffi
x
p
Þt�1

; D < 0

: ð29Þ
Here, D ¼ a2
1 � 4x, and k1; k2 are defined by Eq. (17).
4. Dynamic and limitative behavior of the leader particle

The conclusions of the previous section lead us to investigate in detail about the dynamic and limitative behaviors of the
leader particle.

4.1. Dynamic behavior of the leader

From Eq. (28), we can infer that the positions sampled by the leader particle i lie on a line identified by xiðK þ 1Þ and xiðKÞ.
If xijðK þ 1Þ ¼ xijðKÞ,
xijðK þ tÞ ¼ xijðKÞ; t 2 ½0;MÞ ð30Þ
This implies that the jth components of the positions of the leader particle remain constant during the iterations ½K;K þMÞ,
i.e., the trajectory of the particle i lies on an ðn� 1Þ dimensional subspace of X.

If xijðK þ 1Þ – xijðKÞ, then the positions sampled by the leader particle will oscillate along the line identified by xiðK þ 1Þ
and xiðKÞ, the amplitudes being smaller with increasing t.

4.2. Limiting behavior of the leader

Now we assume that M !1, i.e., the swarm stays in the stagnation state after the Kth iteration. Since jxj < 1, from Eq.
(29), (23) and (27) and keeping in mind that jk1;2j < 1 for D > 0, we can conclude (see Appendix A)
lim
t!1

gðtÞ ¼ 0; ð31Þ
and therefrom
lim
t!1

xðK þ tÞ ¼ xðKÞ: ð32Þ
Thus, if the stagnation continues, the positions sampled by the leader particle will finally converge to the stagnation point.
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5. Dynamic behavior and parameter choice

The derivation presented in the previous section leads us to the conclusion that the points sampled by the leader particle
during stagnation lie on a line identified by xiðK þ 1Þ and xiðKÞ. The purpose of the section in question is to show that the
entire stable region
x 2 ð�1;1Þ; C1 > 0; C2 > 0; 0 < C1 þ C2 < 2ð1þxÞ ð33Þ
can be divided into two sub-regions wherein for the first, gðtÞP 0 for any t and for the second gðtÞP 0 for some t and
gðtÞ < 0 for other t. In other words, the stagnation-time sample points of the leader particle are heavily dependent on the
choice of parameters x;C1 and C2. If the aforementioned parameters lie inside the first sub-region, then the points sampled
by the leader particle during stagnation always lie on one side of the stagnation point. However, restricting them to lie in the
second sub-region ensures that the sampled points corresponding to the leader particle lie on either side of the stagnation
point.

We now investigate the behavior of the function gðtÞ corresponding to the values of x;C1 and C2.
Case 1: x ¼ 0, C1 þ C2 ¼ 1
In this case, x ¼ 0 and C1 þ C2 ¼ 1. Consequently, a1 ¼ 0, which means that D ¼ 0. Hence, gðtÞ ¼ 08t 2 N.
Case 2: D > 0
At the outset, we notice that D > 0 gives a2

1 > 4x, and hence either a1 > 2
ffiffiffiffiffi
x
p

or x < 0.
a. 0 < k1 < k2

We first take up the case where 0 < k1 < k2. This shows that either a1 > �
ffiffiffiffi
D
p

or a1 >
ffiffiffiffi
D
p

. Combining the two, we have

a2
1 > D. Since D ¼ a2

1 � 4x, this gives x > 0. Hence, the only possibility is a1 > 2
ffiffiffiffiffi
x
p

. Since k2 > k1, a1
2 þ

ffiffiffi
D
p

2 > a1
2 �

ffiffiffi
D
p

2 and hence

D > 0. Since a1 > 2
ffiffiffiffiffi
x
p

, and a1 ¼ 1þx� C1 � C2, we have 1þx� C1 � C2 > 2
ffiffiffiffiffi
x
p

and therefore C1 þ C2 < ð1�
ffiffiffiffiffi
x
p
Þ2.

Hence, from the information that jxj < 1 and C1 þ C2 > 0, we conclude that.

� 0 < x < 1
� 0 < C1 þ C2 < 1�

ffiffiffiffiffi
x
p� �2

b. k1 < 0 < k2, jk1j < jk2j
We can write a1

2 þ
ffiffiffi
D
p

2 > 0 and a1
2 �

ffiffiffi
D
p

2 < 0. This leads to a1 <
ffiffiffiffi
D
p

and a1 > �
ffiffiffiffi
D
p

. Writing in a single statement, this gives
�
ffiffiffiffi
D
p

< a1 <
ffiffiffiffi
D
p

In other words, a2
1 < D. Putting D ¼ a2

1 � 4x, we get x < 0, which immediately permits us to write down
�1 < x < 0
since the theoretical lower limit of x is �1. Since jk1j < jk2j,
a1

2
�

ffiffiffiffi
D
p

2

					
					 < a1

2
þ

ffiffiffiffi
D
p

2

					
					:
Since k1 < 0 and k2 > 0, we can write
ffiffiffiffi
D
p

2
� a1

2
<

a1

2
þ

ffiffiffiffi
D
p

2

which means that a1 > 0. Hence 1þx� C1 � C2 > 0 and hence 0 < C1 þ C2 < 1þx;0 being the lower bound of C1 þ C2. For
this case therefore, the conclusions that can be drawn are

� �1 < x < 0
� 0 < C1 þ C2 < 1þx

Case 3: D ¼ 0 and a1 > 0
Since D ¼ 0; a2

1 ¼ 4x and hence a1 ¼ 2
ffiffiffiffiffi
x
p

since a1 is positive. Therefore, 1þx� C1 � C2 ¼ 2
ffiffiffiffiffi
x
p

and hence
C1 þ C2 ¼ ð1�
ffiffiffiffiffi
x
p
Þ2:
Since a1 > 0 and a2
1 ¼ 4x, we have x > 0. We are therefore in a position to modify the result of case 2a. to include the equal-

ity sign and immediately write down

� 0 < x < 1 (as has been already obtained)
� 0 < C1 þ C2 6 1�

ffiffiffiffiffi
x
p� �2
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The above discussion on the three cases and their sub-cases points to those values of the parameters x;C1;C2 for which
gðtÞ > 0 for any t 2 N.

Case 4: D > 0, k1 < 0 < k2, jk1j ¼ jk2j
The first part of the calculation proceeds in exactly the same way as that of case 2b. Writing jk1j ¼ jk2j gives
a1

2
�

ffiffiffiffi
D
p

2

					
					 ¼ a1

2
þ

ffiffiffiffi
D
p

2

					
					:
Therefore this gives
ffiffiffiffi
D
p

2
� a1

2
¼ a1

2
þ

ffiffiffiffi
D
p

2

and hence a1 ¼ 0. In other words, 1þx� C1 � C2 ¼ 0 and consequently,
1þx ¼ C1 þ C2:
This allows us to modify 2b. to include the equality sign and hence conclude that

� �1 < x < 0 (as has been already obtained)
� 0 < C1 þ C2 6 1þx

This case points to the condition where k1 and k2 are equispaced about 0, k1 being negative and k2 positive. As is evident
from Eq. (29), gðtÞ > 0 for any odd t and gðtÞ ¼ 0 for any even t when the parameters satisfy the above.

Case 5: D > 0, k1 < k2 < 0
We readily obtain
a1

2
�

ffiffiffiffi
D
p

2
< 0
and
a1

2
þ

ffiffiffiffi
D
p

2
< 0:
This means that a1 <
ffiffiffiffi
D
p

and a1 < �
ffiffiffiffi
D
p

or that a2
1 < D. This means that a2

1 < a2
1 � 4x or that x < 0 and hence �1 < x < 0.

We also see that k1 < k2. Therefore,
a1

2
�

ffiffiffiffi
D
p

2
<

a1

2
þ

ffiffiffiffi
D
p

2
:

or
ffiffiffiffi
D
p

> 0. Also, since a1 < �
ffiffiffiffi
D
p

and
ffiffiffiffi
D
p

is positive, we have a1 < 0. In other words, 1þx� C1 � C2 < 0 or
C1 þ C2 > 1þx:
Since the canonical PSO predicts that for stability C1 þ C2 < 2ð1þxÞ, we can summarize that

� �1 < x < 0
� 1þx < C1 þ C2 < 2ð1þxÞ

Case 6: D > 0, k1 < 0 < k2, jk1j > jk2j
Here
k1 ¼
a1

2
�

ffiffiffiffi
D
p

2
< 0
and
k2 ¼
a1

2
þ

ffiffiffiffi
D
p

2
> 0:
Hence, a1 <
ffiffiffiffi
D
p

and a1 > �
ffiffiffiffi
D
p

and consequently, a2
1 < D. Therefore, a2

1 < a2
1 � 4x and hence x < 0. In other words,

�1 < x < 0.
Again, jk1j > jk2j or
a1

2
�

ffiffiffiffi
D
p

2

					
					 > a1

2
þ

ffiffiffiffi
D
p

2

					
					:
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So,
 ffiffiffiffi
D
p

2
� a1

2
>

a1

2
þ

ffiffiffiffi
D
p

2

and therefore a1 < 0. This gives 1þx� C1 � C2 < 0 or that
C1 þ C2 > 1þx:
Thus, the conclusions drawn are

� �1 < x < 0
� 1þx < C1 þ C2 < 2ð1þxÞ

Which is the same as case 5.
Case 7: D ¼ 0, a1 < 0
Here, D ¼ 0 which means that a2

1 ¼ 4x. Since a1 < 0, we take the negative square root and write a1 ¼ �2
ffiffiffiffiffi
x
p

. This means
that 1þx� C1 � C2 ¼ �2

ffiffiffiffiffi
x
p

and therefore
C1 þ C2 ¼ ð1þ
ffiffiffiffiffi
x
p
Þ2:
Since, the right-hand-side of the above can be expanded to write ð1þxþ 2
ffiffiffiffiffi
x
p
Þ, we can show by applying the arithmetic

mean-geometric mean inequality on 1 and x (which we can because x > 0) that
1þx > 2
ffiffiffiffiffi
x
p

:

Hence 1þ
ffiffiffiffiffi
x
p� �2

< 2ð1þxÞ and therefore
C1 þ C2 < 2ð1þxÞ:
Further, since
ffiffiffiffiffi
x
p

is positive, it is almost trivial to show that 1þ
ffiffiffiffiffi
x
p

> 1�
ffiffiffiffiffi
x
p

and hence that
C1 þ C2 > 1�
ffiffiffiffiffi
x
p� �2

:

We can hence write

� 0 < x < 1
� 1�

ffiffiffiffiffi
x
p� �2

< C1 þ C2 < 2ð1þxÞ

For the cases 5, 6 and 7 we find that gðtÞ > 0 for any t 2 T1 ¼ ft 2 Njt is oddg and gðtÞ < 0 for any
t 2 T2 ¼ ft 2 Njt is eveng.

Case 8: D < 0
In this case, a2

1 � 4x < 0 and hence a2
1 < 4x. We conclude that x > 0 and hence 0 < x < 1. Again a1 < 2

ffiffiffiffiffi
x
p

which
implies that 1þx� C1 � C2 < 2

ffiffiffiffiffi
x
p

and therefore
C1 þ C2 > 1�
ffiffiffiffiffi
x
p� �2

:

We therefore can write

� 0 < x < 1
� 1�

ffiffiffiffiffi
x
p� �2

< C1 þ C2 < 2ð1þxÞ

The case 8 leads us to the conclusion that gðtÞ > 0 for any t 2 T1 ¼ t 2 Nj sinðthÞ > 0f g and that gðtÞ < 0 for any
t 2 T2 ¼ t 2 Nj sinðthÞ < 0f g.

5.1. Subregions of the parameter space

We now proceed to define four sets Si where i ¼ 1;2;3;4 as follows:
S1 ¼ ðx;C1;C2Þj � 1 < x < 0; 0 < C1 þ C2 6 1þxf g ð34aÞ

S2 ¼ ðx;C1;C2Þj0 6 x < 1; 0 < C1 þ C2 6 1�
ffiffiffiffiffi
x
p� �2

n o
� ðx;C1;C2Þjx ¼ 0;C1 þ C2 ¼ 1f g ð34bÞ

S3 ¼ ðx;C1;C2Þj � 1 < x < 0;1þx < C1 þ C2 < 2ð1þxÞf g ð34cÞ

S4 ¼ ðx;C1;C2Þj0 6 x < 1; 1�
ffiffiffiffiffi
x
p� �2

< C1 þ C2 < 2ð1þxÞ
n o

ð34dÞ
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We therefore find that if M !1, or in other words, if the swarm stays in stagnation forever, we have the following results:

� If x ¼ 0;C1 þ C2 ¼ 1, then gðtÞ ¼ 0 for any t 2 N.
� If the parameters ðx;C1;C2Þ 2 S1 [ S2, then gðtÞP 0 for all t 2 N. Furthermore, there exits an infinite set T 0 	 N such

that gðtÞ > 0 for all t 2 T 0.
� If the parameters ðx;C1; C2Þ 2 S3 [ S4, then there exist two infinite sets T1 and T2, such that gðtÞ > 0 for all t 2 T1

while gðtÞ < 0 for all t 2 T2.

The above discussion serves to illuminate one extremely vital ingredient when it comes to stagnation in PSO. Since PSO is
prima facie an exploratory algorithm, the leader particle needs to search on either side of the stagnation point. Since
ðx;C1;C2Þ 2 S1 [ S2 ensures that gðtÞ is never less than 0 for any t 2 N, we can conclude that the leader particle explores
the landscape on only one side of the stagnation point xiðKÞ and completely ignores the other side. This highlights that
the parameter subspace S1 [ S2 may not be a good choice when it comes to PSO.
6. Objective function gradient and the parameter choice

In this section, we will look into the surface of the objective function and determine some relation between its gradient
and the values of the parameter.

Let us assume that the whole swarm is in the stagnation state permanently i.e. M !1 and the objective function f ðxÞ is
continuously differentiable at least in a small neighborhood of the stagnation point.

During stagnation for the leader particle i, we can write,
f ðxiðK þ tÞÞP f ðxiðKÞÞ; t ¼ 1;2; . . .
This relation, along with Eq. (28), gives us
f ðxiðKÞ þ gðtÞdÞ � f ðxiðKÞÞP 0; t ¼ 1;2; . . . ; ð35Þ
where d ¼ xiðK þ 1Þ � xiðKÞ.
A: ðx;C1;C2Þ 2 S1 [ S2.
From the results of the previous section, in this region gðtÞP 0;8t 2 N; and 9T 0 	 N such that gðtÞ > 0;8t 2 T 0. Combining

with Eq. (35), we have
f ðxiðKÞ þ gðtÞdÞ � f ðxiðKÞÞ
gðtÞ P 0; t 2 T 0:
If t 2 T 0; t !1, along with (31) we have,
rf ðxiðKÞÞT d P 0: ð36Þ
Therefore �d ¼ xiðKÞ � xiðK þ 1Þ is along the descent direction of the objective function at the stagnation point xiðKÞ.
B: ðx;C1;C2Þ 2 S3 [ S4.
Again from the results of the previous section, we know in this region there exists infinite sets T1 2 N and T2 2 N, such

that gðtÞ > 0 for t 2 T1 and gðtÞ < 0 for t 2 T2. Combining with Eq. (35), we have
f ðxiðKÞ þ gðtÞdÞ � f ðxiðKÞÞ
gðtÞ P 0; t 2 T1:
and
f ðxiðKÞ þ gðtÞdÞ � f ðxiðKÞÞ
gðtÞ 6 0; t 2 T2:
Again letting t !1, with the help of Eq. (31), we have both
rf ðxiðKÞÞT d P 0:
and
rf ðxiðKÞÞT d 6 0:
Therefore we have
rf ðxiðKÞÞT d ¼ 0: ð37Þ
So, d ¼ xiðK þ 1Þ � xiðKÞ is orthogonal to the gradient of the objective function at the stagnation point.



Fig. 1. Plot of gðtÞ vs t with C1 ¼ C2 ¼ 0:07 and x ¼ �0:7, i.e. ðx;C1;C2Þ 2 S1.

Fig. 2. Plot of gðtÞ vs t with C1 ¼ C2 ¼ 0:05 and x ¼ 0:3, i.e. ðx;C1;C2Þ 2 S2.

Fig. 3. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:07 and x ¼ �0:7, i.e. ðx;C1;C2Þ 2 S1 on the f2 i.e., shifted Schwefel’s function.
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7. Simulation results

In this section we provide some numerical results generated through computer simulations to back the theoretical results
obtained in the previous sections. We choose several parameter values in S1 [ S2 and S3 [ S4 as well. For each case we provide
the time-variation of gðtÞ and the sample history of the leader particle.



Fig. 4. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:07 and x ¼ �0:7, i.e. ðx;C1;C2Þ 2 S1 on the f4 i.e., shifted Schwefel’s function with noise in
fitness.

Fig. 5. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:07 and x ¼ �0:7, i.e. ðx;C1;C2Þ 2 S1 on the f6 i.e., shifted Rosenbrock’s function.

Fig. 6. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:07 and x ¼ �0:7, i.e. ðx;C1;C2Þ 2 S1 on the f15 i.e., Hybrid Composition Function.

Fig. 7. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:07 and x ¼ �0:7, i.e. ðx;C1;C2Þ 2 S1 on the f7 i.e., shifted rotated Griewank’s function
without bounds.
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Fig. 8. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:07 and x ¼ �0:7, i.e. ðx;C1;C2Þ 2 S1 on the f10 i.e., Shifted Rotated Rastrigin’s Function.

Fig. 9. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:07 and x ¼ �0:7, i.e. ðx;C1;C2Þ 2 S1 on the f11 i.e., Shifted Rotated Weierstrass Function.

Fig. 10. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:05 and x ¼ 0:3, i.e. ðx;C1;C2Þ 2 S2 on the f2 i.e., Shifted Schwefel’s Function.

Fig. 11. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:05 and x ¼ 0:3, i.e. ðx;C1;C2Þ 2 S2 on the f4 i.e., Shifted Schwefel’s Function with noise in
fitness.
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Fig. 12. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:05 and x ¼ 0:3, i.e. ðx;C1;C2Þ 2 S2 on the f6 i.e., Shifted Rosenbrock’s Function.

Fig. 13. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:05 and x ¼ 0:3, i.e. ðx;C1;C2Þ 2 S2 on the f7 i.e., Shifted Rotated Griewank’s Function
without Bounds.

Fig. 14. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:05 and x ¼ 0:3, i.e. ðx;C1;C2Þ 2 S2 on the f10 i.e., Shifted Rotated Rastrigin’s Function.

Fig. 15. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:05 and x ¼ 0:3, i.e. ðx;C1;C2Þ 2 S2 on the f11 i.e., Shifted Rotated Weierstrass Function.

30 S. Chatterjee et al. / Information Sciences 279 (2014) 18–36



Fig. 16. Plot of gðtÞ vs t with C1 ¼ C2 ¼ 0:244 and x ¼ �0:7, i.e. ðx;C1;C2Þ 2 S3.

Fig. 17. Plot of gðtÞ vs t with C1 ¼ C2 ¼ 1:5 and x ¼ 0:8, i.e. ðx;C1;C2Þ 2 S4.

Fig. 18. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:244 and x ¼ �0:7, i.e. ðx;C1;C2Þ 2 S3 on the f4 i.e., Shifted Schwefel’s Function with noise
in fitness.

Fig. 19. Positions sampled by the leader particle with C1 ¼ C2 ¼ 0:244 and x ¼ �0:7, i.e. ðx;C1;C2Þ 2 S3 on the f10 i.e., Shifted Rotated Rastrigin’s Function.
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Fig. 20. Positions sampled by the leader particle with C1 ¼ C2 ¼ 1:5 and x ¼ 0:8, i.e. ðx;C1;C2Þ 2 S4 on the f2 i.e., Shifted Schwefel’s Function.

Fig. 21. Positions sampled by the leader particle with C1 ¼ C2 ¼ 1:5 and x ¼ 0:8, i.e. ðx;C1;C2Þ 2 S4 on the f4 i.e., Shifted Schwefel’s Function with noise in
fitness.

Fig. 22. Positions sampled by the leader particle with C1 ¼ C2 ¼ 1:5 and x ¼ 0:8, i.e. ðx;C1;C2Þ 2 S4 on the f6 i.e., Shifted Rosenbrock’s Function.
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7.1. Parameter choices in subregion S1 [ S2

From the conclusion of Section 5 we know that when ðx;C1;C2Þ 2 S1 [ S2; gðtÞP 0, the leader particle searches only one
side of the stagnation point along the line xiðKÞ � xiðK þ 1Þ.

Here, two parameter combinations are chosen within the subregion S1 [ S2 : ðC1 ¼ C2 ¼ 0:07;x ¼ �0:7Þ; ðC1 ¼
C2 ¼ 0:05;x ¼ 0:3Þ; the first lies in S1 and the second in S2. For each combination we have provided the plot of gðtÞwith time.



Fig. 23. Positions sampled by the leader particle with C1 ¼ C2 ¼ 1:5 and x ¼ 0:8, i.e. ðx;C1;C2Þ 2 S4 on the f7 i.e., Shifted Rotated Griewank’s Function
without Bounds.

Fig. 24. Positions sampled by the leader particle with C1 ¼ C2 ¼ 1:5 and x ¼ 0:8, i.e. ðx;C1;C2Þ 2 S4 on the f10 i.e., Shifted Rotated Rastrigin’s Function.

Fig. 25. Positions sampled by the leader particle with C1 ¼ C2 ¼ 1:5 and x ¼ 0:8, i.e. ðx;C1;C2Þ 2 S4 on the f11 i.e., Shifted Rotated Weierstrass Function.
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To observe the dynamic behavior of the leader particle we choose to use the benchmark functions provided in the IEEE
Congress on Evolutionary Computation (CEC) 2005 competition and special session on real-parameter optimization [36]
with constant C1; C2 and with random C1;C2 as well.

All the functions are 2D. Initial positions and velocities are randomized and stagnation is detected before starting to plot
the positions sampled by the leader particle. The stagnation point in each relevant diagram is marked with an asterisk.



Fig. 26. Positions sampled by the leader particle with C1 ¼ C2 ¼ 1:5 and x ¼ 0:8, i.e. ðx;C1;C2Þ 2 S4 on the f15 i.e., Hybrid Composition Function.
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Figs. 1–7 show the plot of gðtÞ, Figs. 3–14 show the sample histories of the leader particle when C1; C2 are constant. We
can see from Figs. 1 and 2, that gðtÞP 0 always holds for this set of parameter values. Again Figs. 3–15 show that the posi-
tions sampled by the leader particle lie on only one side of the stagnation point. Hence the theoretical results proposed in
Section 5 are supported by the numerical experiments. The side of the stagnation point on which the sampled points will lie
are determined by xðK þ 1Þ.
7.2. Parameter choices in subregion S3 [ S4

Now, the parameters are chosen within the subregion S3 [ S4 where, from the mathematical analysis, we know that the
leader particle samples the positions on both the sides of the stagnation point.

From Figs. 16 and 17 we can conclude that gðtÞ < 0 for some t and gðtÞ > 0 for other t. which reinforces the results
obtained in Section 5. Here the leader particle explores both sides of the stagnation point. which can be seen from the
Figs. 17–25. Here also the positions sampled by the leader particle lie on a line determined by xiðKÞ and xiðK þ 1Þ.

The two sets of parameters are ðC1 ¼ C2 ¼ 0:244;x ¼ �0:7Þ and ðC1 ¼ C2 ¼ 1:5;x ¼ 0:8Þ. The former combination lies
within the subregion S3 with D > 0 and the latter lies in S4 with D < 0. Figs. 16 and 17 show the plot of gðtÞ vs t. Figs. 18–
26 show the sample histories of the leader particle where C1 and C2 are constant.
8. Conclusion

The behavioral dynamics of the leader particle in a particle swarm optimization algorithm have been investigated here
considering an iterative functional approach.

Taking the characteristic parameters of the PSO, namely x, C1 and C2 as constants, we have proved that the points sam-
pled by the leader particle satisfy a simple relation. The points sampled by the leader particle lie on a straight line identified
by xiðKÞ and xiðK þ 1Þ. It has also been demonstrated that the function gðtÞ regulates the behavior of the leader particle. The
popular convergence region of the PSO algorithm can be divided into two sub-regions designated S1 [ S2 and S3 [ S4. In the
former gðtÞP 0 is always true. This immediately points to the fact that the leader particle searches only a single side of the
stagnation point. The other side is never explored. Parameter choices made in this region are bad choices for the PSO as it
destroys the exploratory nature of the algorithm.

When stagnation remains, i.e. when M !1 we also obtain crucial information about the gradient of the objective func-
tion. We have successfully shown that when the parameters lie in S1 [ S2, then the direction xiðKÞ � xiðK þ 1Þ is a descent
direction of the objective function at the stagnation point xiðKÞ. On the other hand, if the parameters lie in S3 [ S4, then
the direction xiðKÞ � xiðK þ 1Þ is orthogonal to the gradient of the objective function at the stagnation point xiðKÞ. Such a gra-
dient-oriented analysis of the PSO algorithm is a unique area of work that is not found in the current literature on PSO.

The analytical results point to an improvement in the parameter choice so that there is an improvement in the perfor-
mance of the PSO algorithm. It seeks to obtain this objective by shedding light on the dynamics of the leader particle in stag-
nation. The leader particle being the one that reaches stagnation point first during stagnation, the study of its dynamics holds
importance. Although existing literature has tried to analyze the convergence, particle trajectories and stability of PSO, the
leader particle dynamics presented in this paper provides a unique approach to the study. A clear indication of the theoret-
ical results of our paper is towards the parameter choice ðx;C1;C2Þ 2 S3 [ S4. This will help to design PSO models that are
both effective and efficient. There is a twofold support for this parameter space. On the first place, for ðx;C1;C2Þ 2 S3 [ S4,
the leader particle is able to search both sides of the stagnation point. In such a situation, there is a greater probability of
obtaining better result. For instance, if the optimum happens to be on the side the leader particle never searches, then
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the optimization using such a PSO would not yield desirable results. The goal of any optimization algorithm should lay
emphasis on sufficient exploration of the search space. Even if the algorithm eventually reaches stagnation, it would be more
effective if it can search a greater space before there is no further improvement in position of the particles. On the second
hand, the objective function gradient and the points sampled by the leader particle corroborate the parameter choice in
S3 [ S4. If xiðKÞ � xiðK þ 1Þ is orthogonal to the gradient of the objective function, then there is more exploration. Both the
sides of the stagnation point are covered as all points sampled in successive iterations lie on the search space. If, however,
xiðKÞ � xiðK þ 1Þ is along the descent direction of the objective function, or xiðK þ 1Þ � xiðKÞ is along the ascent direction of
the objective function, successive iterations search only the descent direction, which lies on the search space. There is a loss
in explorative nature. The theoretical analysis presented in this paper can lead to similar analysis for other optimization
algorithms where the fittest particle in the process of optimization may be analyzed. While that might help to improve
the parameter choice, it would also provide useful insight into the subtle changes leading to stagnation.

Further extensions of the work include a statistical analysis of the dynamics of the leader particle considering the param-
eters x, C1 and C2 to be completely random in nature. Possible improvements to the PSO algorithm can possibly be observed
then. Besides it can focus on the damped oscillation that occurs about the stagnation point during stagnation. The cases of
under-damped, over-damped and critically damped oscillations depending on parameter choice can be taken up and their
implications on PSO performance dealt with.

Appendix A. Evaluation of the limit of gðtÞ as t ! ‘

From Eq. (29),
gðtÞ ¼ ðk
t
2 � kt

1Þffiffiffiffi
D
p ; D > 0
Now since
k1;2 ¼
a1

2
�

ffiffiffiffi
D
p

2

where a1 ¼ 1þx� /;/ ¼ C1 þ C2 and a2 ¼ �x; and for stable region 0 < ðC1 þ C2Þ < 2ð1þxÞ, we can conclude
ja1j < 1þx. Again D ¼ a2

1 þ 4a2 ¼ a2
1 � 4x. So,
jk1;2j ¼
a1

2
�

ffiffiffiffi
D
p

2

					
					 < 1

2
ð1þxÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þxÞ2 � 4x

q� �
¼ 1

2
½ð1þxÞ � ð1�xÞ�
¼ 1 or x and jxj < 1. Thus jk1;2j < 1 and gðtÞ ! 0 as t !1 for D > 0.
Again we know form Eq. (29),
gðtÞ ¼ t
a1

2

� �t�1
; D ¼ 0:
Since ja1j < 1þx and �1 < x < 1; ja1j < 2) a1
2

		 		 < 1,
a1

2

� �t�1
! 0
as t ! 0. Therefore gðtÞ ! 0 as t ! 0.
Lastly from Eq. (29),
gðtÞ ¼ sinðthÞ
sin h

ffiffiffiffiffi
x
p� �t�1

; D < 0:
Now j sinðthÞj < 18t and sin h – 0; therefore since jxj < 1,
gðtÞ ! 0
as t ! 0.
So we can conclude
lim
t!1

gðtÞ ¼ 0;
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