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A Lagrangian Approach to Modeling
and Analysis of a Crowd Dynamics

Sudipto Mukherjee, Debdipta Goswami, and Sarthak Chatterjee

Abstract—Modeling of crowd and pedestrian dynamics has
intrigued engineers, physicists, and sociologists alike, even in
recent times. Scientists have long sought to model the collective
motion of large groups of individuals and study the mathemat-
ical basis of what seems to be apparently random behavior. A
large number of macroscopic models have been proposed that
describe crowd motion as a whole, much like the partial dif-
ferential equations of fluid mechanics. This paper proposes a
Lagrangian approach to the modeling of crowd dynamics by
taking into consideration the various forces that act between the
members of a crowd while they are in motion in a 2-D field.
We attempt a realistic modeling of the attractive and repulsive
forces between the members and seek to give a definite mathe-
matical backbone to the terms “panic” and “evacuation.” That
the dynamics is stable is demonstrated by constructing an appro-
priate Lyapunov energy function. We then linearize the dynamics
to obtain mathematical expressions for the small perturbations
about an equilibrium point. Through machine simulations and
by tracking the motion of actual crowd systems, we show the
validity of the mathematics of group formation and evacuation
that we have proposed.

Index Terms—Crowd dynamics, evacuation, macroscopic and
microscopic model, modeling, panic.

I. INTRODUCTION

CROWD dynamics remains to be an area of focus in
multiagent systems even in [10] and [14]. Pedestrian and

crowd dynamics seek to mimic the many complexities exhib-
ited by a crowd in its immediate surroundings. The social
behavior of the entity as a whole, as well as the individuals
forming the group, has received due interest from researchers
from various fields of study including physics, sociology, and
engineering. Crowd dynamics may be defined as the study of
the formation of crowds, the interactive forces governing the
motion of individuals, and the effects at high density, with the
motivation for building better, safer, and robust crowd man-
agement systems. While the literature is replete with works
centered around swarming dynamics, social foraging swarms,
automated multiagent systems, and heuristics that represent
natural processes, the modeling of crowd behavior still has
a lot of scope for future contributions [8]. Modeling and
analysis of crowd dynamics has gained momentum recently
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owing to the need to devise effective evacuation procedures.
Such evacuation processes are quintessential to the survival
and safety of large numbers of people. Intuitive methods may
provide the necessary evacuation arrangements in simple situ-
ations, but when the architectural structures are more complex
and in situations of utmost exigency [25], [28], [29], [34]
prudent evacuation decisions rest on reliable simulations.

Evacuation processes [46], crowd disasters [20], and traf-
fic management may have been central to the motivation for
research in this field. However, it would be grossly unjusti-
fied to undermine the interest that is culminated by the unique
social collective behavior of a crowd. Even though each indi-
vidual is distinct, there occurs an underlying coherence that
governs crowd behavior [9], [12], [40], [44]. The growing
interest of researchers to opt for a macroscopic model of crowd
dynamics can be attributed to a crowd’s underlying collective
behavior. Crowd simulation models that have existed for a few
decades include queuing models, transition matrix models, and
stochastic models [7], [15], [52]. Earlier models resorted to
statistical regression analysis for predictions. Henderson [23]
modeled his crowd in analogy with the behavior of fluids.
Although this model did portray collective behavior, it had to
be corrected to include interactions introduced by individuals,
which did not pertain to momentum conservation and energy
conservation laws. Such fluid dynamic models were applied
to traffic flow problems and 1-D vehicle flow problems.

It is apt now to refer to the noteworthy distinction that
exists between two disparate methods of crowd modeling—the
macroscopic and the microscopic methods. Microscopic mod-
eling focuses on the individuals forming the entity, in this case
the crowd. It takes into account the interactions of the individ-
uals with their immediate surroundings, with other individuals,
as well as their own motivation. The direction of motion,
speed, and acceleration of the individual receive prime focus in
the design. Collective behavior is assimilated from the knowl-
edge of the motion of the individuals [5], [42]. On the contrary,
the macroscopic model lays emphasis on group behavior,
with the focus shifting from the individual to the entity as
a whole [11], [33]. Rather than accounting for the individ-
ual interactions and the perturbations introduced by them, the
macroscopic model gives a broader picture. There is emphasis
now on average velocity, average acceleration and the general
direction of motion [16], [26]. Individual behavioral effects
and preferences are smoothed out giving a net average effect.
Consequently, such modeling methods are prone to adapt an
Eulerian approach of analysis involving the center of mass and
density concepts [45].
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Interesting work in macroscopic analysis includes that of
Zhang [53]. The model proposed by him was based on the
microscopic-to-macroscopic derivation property. Incorporating
partial differential equations that depict the continuity and
momentum equations, the model could venture the anisotropic
nature of traffic flows. This was in compliance with the empir-
ical traffic flow behavior in which the pedestrian movement
is influenced by the current and front positions and not so
by rear positions. This behavior of crowds distinguishes itself
from that of a fluid, where a fluid particle is influenced from
all directions. Al-Nasur and Kachroo [38] extended the 1-D
vehicle traffic flow model of Zhang [53] to a 2-D pedestrian
movement flow. The model incorporated bidirectional flow
and provided ways to control different pedestrian behaviors.
The anisotropic feature in Zhang’s model [53] was preserved
even on extension to two dimensions. The system that occurs
is a 2-D nonlinear hyperbolic partial differential equation
system. Simulations were performed using numerical finite
volume methods.

The model presented in this paper is a microscopic model
and is based on the Lagrangian, rather than the Eulerian
approach. Recent works have expressed increased focus on
the individual and local interactions. Helbing [17] stressed
the need of the agent-based models inasmuch as local coor-
dinations come to light in such models. Also, there is no
denying the fact that collective behavior results from each
of those elementary individual interactions and hence their
study will provide a better insight about collective crowd
behavior. Helbing and Molnár’s work [22] encircling around
the social force model rightly espouses the flexibility in
simulation of individual pedestrian motion. Inspired by the
methods of Helbing [19], this paper depicts the acceleration
of an individual in the crowd and takes into consideration
its immediate surroundings, the interactions with the prox-
imity groups, obstacles in its path and its intrinsic preferred
motion. The social force concept gives a mathematical form to
the systematic behavioral changes resulting from the interac-
tions of individuals. Situations of panic in crowd dynamics
find a significant place in Helbing et al.’s work [18], [21].
The force expressions incorporate additional terms in panic
situations. There is a growing unrest among the individ-
uals of the crowd, well justified by the extra frictional
terms. Moussaïd et al. [36], [37] explored the group patterns
in crowds where the level of interaction is midway between
a macroscopic and a microscopic model. Group working pat-
terns is a new direction given by their work. With increase
in density of the group, the linear walking pattern changes
to a V-like pattern. It presents an analysis where better
communication among the individuals is taken care of.

There have been diverse works on crowding in the fields of
computer vision [4], [13], [30], [39], [47], [50] and machine
learning as well [1], [24]. Ali and Shah [3] proposed a frame-
work based on Lagrangian particle dynamics that sought to
segment high-density crowd flows and detect the aberrations
in flow. Vision problems in this field may range from the crowd
information extraction, recognition, or tracking [6], [27], [35].
Scovanner and Tappen [41] presented a method to learn the
parameters governing pedestrian motion by observing video

data. A continuous pedestrian cost model is optimized in their
work and the results find use in real-life tracking situations.

The main distinction that this paper presents in this field
of work is the Lagrangian approach to microscopic analysis
of crowds with a precise mathematical formulation. The sim-
plicity of the mathematical representation is resonant with the
need for flexible simulation. This, however, does not in any
way compromise with the inclusion of the essential interac-
tive forces among the individuals. The rest of this paper is
organized as follows. Section II gives a vivid analysis of the
crowd dynamics model presented in this paper. Section III
provides the stability analysis of the model. The stability anal-
ysis is based on the construction of the Lyapunov energy
function [31], [43], [49] via the variable-gradient method. In
Section IV, we have linearized the dynamics to mathematically
express the small perturbations about the equilibrium points in
terms of the parameters of the dynamics. The relevant simu-
lations constitute Section V. Section VI discusses future work
and concludes this paper.

II. PROPOSAL OF THE DYNAMICS

The proposed system of crowd dynamics seeks to model the
individuals forming the crowd by considering the forces that
affect their motions. The crowd or pedestrian dynamics being
essentially a 2-D modeling, take into account the position,
velocity, and acceleration vectors, respectively, in R2. Let us
consider N individuals forming the crowd. The acceleration of
the ith individual in R2 is governed by the relation

dvi

dt
= (ω − 1)vi −

∑

∀j
j�=i

Caij

(
a

xj − xi

‖xi − xj‖m+1
− b

xj − xi

‖xi − xj‖n+1

)

−

⎡

⎢⎢⎣
∑

∀j
j�=i

Crij exp
(
−‖xi − xj‖2

) xj − xi

‖xi − xj‖ + dwall − xi

‖xi − dwall‖3

⎤

⎥⎥⎦

(1)

where ω is positive-definite, Caij and Crij are positive
semi-definite real constants, Caij and Crij being defined as
follows:

Caij =
{

0 if j does not form a group with i
+ve if j forms a group with i

and

Crij =
{+ve if j does not form a group with i

0 if j forms a group with i

xi’s and vi’s are all 2-D vectors and the vector notation is
implicitly assumed. m and n are positive powers determining
the intragroup attractant-repellent profile.

The acceleration being directly related to the forces that
influence the motion of the individuals in the crowd, we
can now highlight the various forces that dictate the motion.
There is an interaction among the individuals of the crowd in
the course of their motion, thus inclining the individuals to
form groups. The pedestrian group formation is one aspect
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that gives the Lagrangian crowd model a cooperative form.
This unique feature among crowds distinguishes it clearly
from swarms or other multiagent systems whose motion is
governed by sharing of information and cooperation among all
the agents [2], [48]. However, among pedestrians, more often
than not, there is group formation whereby acquaintances
move together. There exists a visible distinction between a
group of friends or family members and between two such
groups which are not acquainted with each other. This social
behavior observed among crowds is exploited in the dynam-
ics. The intragroup attractant-repellent profile is modeled in
the likes of the forces that operate in crystal structures. The
Lennard-Jones potential is one such model that defines the
interaction between a pair of neutral atoms or molecules.
The Pauli repulsion at short distances and the attractive van
der Waals forces at long range come into play. In a group
of pedestrians, this interplay of attraction and repulsion finds
prominence owing to the fact that each individual has a radius
of comfort. If the force was only attractive, then within a
group, the distance between individuals would reduce to zero
and a social behavior would seem anti-social, even hostile.
The profile of the attraction and repulsion within a group
member can simply be given by the equation

f (x) = Ca

(
a

1

|x|m − b
1

|x|n
)

(2)

f (x) provides a strong repulsion at close enough distances. We
define r = r0 as the radius of comfort, where the attractive and
repulsive forces are equal. At distances less that the radius of
comfort, strong repulsion starts acting that prevents the hostile
situation within a group. This further allows the representation
of the individuals as a finite radius disc, since r tending to zero
implies f (x) tending to infinity. Each individual can be repre-
sented as a disc of radius ri, where ri ∈ (0, r0) and ri � r0.

The attraction starts at r > r0 and has the maximum value
at r = rm. As the distance increases indefinitely, there no
longer remains any attraction as even acquaintances then fail
to recognize each other’s presence owing to the great distance
of separation. This is in compliance with everyday experience.
Even if two individuals are known to each other, they may not
form a group in a busy street or in that case, say, a market place,
if they are separated by a distance that hinders the establishment
of any interaction between them. The interaction is possible
when they are at an eyesight distance from each other.

The constants Caij further scale the attractant-repellent pro-
file. It may have the same value irrespective of the presence
of individuals. It may even assume different values based on
how strong or how weak the interaction is between two mem-
bers in the crowd. We have kept flexibility in the parameter
choice of the dynamics based on the domain of application.
The constants a, b, m, and n determine the nature of f (x). We
have shown the influence of these constants on the profile by
providing plots of f (x) with their variation.

The plot of this relation for different values of Ca is shown
in Fig. 1. Ca scales f (x) and the functional value at minima
changes with its variation. But the radius of comfort r0 as well
as the distance at which maximum attraction is obtained, rm,
remain unchanged. The variation of f (x) with b is shown

Fig. 1. f (x) versus x for the variation of Ca with a = 1 and b = 8.

Fig. 2. f (x) versus x for the variation of b with a = 1.0 and Ca = 1.

in Fig. 2. Here, with increase in b, the radius of comfort
decreases, but the maximum attractive force increases. For
both the plots, we took m = 12 and n = 6.

The repulsion between disparate groups and strangers is taken
into account by the repulsive exponential terms in the dynamics.
The repulsion varies as the function exp(−‖xi − xj‖2). As
the distance between the individuals increases, the repulsion
decreases. This relation is again in direct analogy with the social
scenario where the repulsive forces are negligible when there
is a considerable distance between two unacquainted groups.
However, if one group comes in close affinity of another, there is
the presence of strong repulsion so that the merging of distinct
groups does not take place and each group retains its own
cooperative identity. It is worthy now to mention the modeling
of repulsion with the exponential variation, rather than in any
other form. The motivation for such exponential variation arises
from the fact that exponential repulsive forces fall off faster
than their attractive counterparts. When the repulsion between
like charges and attraction between unlike charges occurs in a
crystal, it gives rise to an attractant-repellent profile that attains
equilibrium state with the rapid decrease of the repulsive force
with distance compared with the attractive force. Consequently,
our proposed model considers an exponential variation for the
repulsion. For repulsion, likewise, the value of parameter Crij

depends on the degree of repulsion. It may be identical for all
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interactions or it may be varied based on the requirements of
application.

Apart from the interactions with other individuals in the
crowd, we consider the ability of the pedestrian to avoid obsta-
cles in his path. The obstacle may be a wall, a dead end, or
any other object that needs to be avoided in the course of
motion. The term (dwall − xi)/‖xi − dwall‖3 takes into account
the effect of obstacles. The obstacle has negligible influence on
the motion when it is far away from the pedestrian. However,
there is a strong retarding force inhibiting direct collision with
the obstacle when the pedestrian is in its vicinity. Discretizing
the relation for acceleration with respect to time gives vi(t+1)

as a function of vi(t) along with the other terms. The intrin-
sic ability of the individual to move on his own discretion
is reflected by the term ωvi. This inertia factor ω defines the
self motivation which is pivotal in the modeling of a crowd
dynamics, a departure from the modeling of inanimate entities.
It may so happen that one member of a group may find the
need to differ his direction of motion from that of the group.
It represents the will of the member to manoeuvre his motion
as per his necessities. The confluence of these various forces
and motivations for movement observed in crowds forms the
dynamics in its entirety. It is fascinating to note how with min-
imal changes to the basic dynamics, we are able to incorporate
other salient features characterizing the motion of individuals
in a crowd.

The crowd may be seen as groups of individuals mov-
ing toward a destination. To model the pedestrian and crowd
system within a certain time interval in a 2-D field, we
make certain assumptions valid at a large scale. Firstly, each
individual in a crowd system originates from a source and
reaches a sink or destination. This is similar to a pedes-
trian starting his/her journey from the source and reaching
the desired destination. After reaching the destination, the
corresponding individual’s velocity becomes zero abruptly. We
enforce Cai and Cri to be zero when the individual is at rest so
that it does not influence the motion of any other individual.
If the individual again starts his motion, Cai and Cri regain
nonzero values, so does its velocity, thereby incorporating it
into the system. The second assumption is that within a cer-
tain time interval, for large scale statistical data, we can say
that the number of individuals reaching the destination is the
same as the number originating from the source. The dynamics
is able to model the motion of the pedestrian or crowd sys-
tem with individuals moving from source to destination. The
source may be unknown or may not come under the purview
of modeling concerns. The destination may be a shop in a
market place, the work place, a park, or even a restaurant
for a pedestrian. Once the group, or even a single individual
reaches such a destination, his motion ceases. The velocity
decreases to zero on reaching the desired place. This real-
life situation is aptly portrayed by our dynamics where the
velocities of the groups converge to zero, indicating that the
destination has been reached. For the purpose of simulations,
at the starting time, the position, and velocity of the individu-
als may be chosen to be random and the interplay of the forces
becomes clear when the motion starts. There is no necessity
in a crowd dynamics, however, for position convergence to

a particular point, for even though the group members reach
the same velocity, they are not at the same coordinates at the
same instant of time. Also owing to the intrinsic motivation,
one member may be walking ahead in the group, others may
be trailing. As long as they are at an eyesight distance and the
attraction remains, they retain their group identity.

The velocity converging to zero can be considered a spe-
cific scenario. Although this situation does arise, the groups
retaining their constant velocities is equally observed. Let us
take the example of a group of people taking the exit route
after the train reaches the station. Here the velocities does not
reach zero, rather all individuals in a particular group after
exit maintain a velocity, which may be different from indi-
viduals in other groups. Other instances of this phenomenon
occur in places where there is an urge for continual flow after
an intermediate transit. The intermediate transit may be the
ticket check or the exit door. We have been able to include
this behavior in our dynamics. The acceleration in such a case
involves an additional term. If there are M groups and the
ith individual belongs to group m, where the desired group
velocity is vgm, its acceleration is given by

dvi

dt
= (ω − 1)vi −

∑

∀j
j �=i

Caij

(
a

xj − xi

‖xi − xj‖m+1
− b

xj − xi

‖xi − xj‖n+1

)

−

⎡

⎢⎢⎣
∑

∀j
j �=i

Crij exp
(
−‖xi − xj‖2

) xj − xi

‖xi − xj‖

+ dwall − xi

‖xi − dwall‖3

⎤

⎥⎥⎦+ K(vgm − vi) (3)

where K ∈ (0, 1). This modification makes it possible to
extend our dynamics even for a flocking system, where the
velocity of the entire swarm approaches a definite value. Such
flocking systems similarly attain the steady velocity with time
through cooperation between all the entities. Nevertheless,
there is a slight difference with the crowd as regards the
different velocities that different groups can attain.

A. Panic in Crowds and Its Modeling

The multitude of crowd disasters that frequent public places
deserves special concern. Such tragic incidents may be the
result of casualties, man-made or natural, or they may be
triggered by sheer negligence such as the rush of people to
the exit of a public place, shrine, stadium, railway station,
subway, airports, and the like [51]. We seek to address such
situations through modeling of the panic in crowds. Such a
modeling would enable the design of intelligent evacuation
procedures, better conceptualization of the emergency situ-
ations and an insight into precautionary measures to avoid
future life-threatening incidents. Rather than providing an
empirical or statistical analysis, we mathematically model the
phenomenon by introducing a term in the basic dynamics that
will aid to simulate the urgent egress in a panic situation.
Before, we proceed to the dynamics, it is necessary to clarify
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panic in crowds. By panic, we refer to situations where there
is an increasing density of people and the cooperative group
structure illustrated before gives way to a repulsive, impetuous,
instinctive action. It is merely individualistic decisions that
govern the motion of people in such situations. For instances
of panic in crowds, we can picture public places, say a theater
hall, where at the conclusion of a play, people rush out of the
hall. The large group of people moving out of a railway sta-
tion, the frenetic movement of fervent supporters at a stadium,
or the extreme situation of people escaping from a building
on fire—all present varying situations of panic. This leads us
to introduce the degree of panic that helps demarcate one sit-
uation from another. Accurate modeling necessitates such a
distinction as rescue measures for a panic situation of lower
degree may not be identical to one with a greater degree of
panic and requiring urgent evacuation measures. The degree of
panic, denoted in our dynamics by n, indicates the extremity
of the turbulence in the high-density crowd issuing forth. The
previous examples of the theater hall and the building on fire
elucidate it further. In case of the theater hall, there is no doubt
an urge for the exit among the people. Nonetheless, some peo-
ple still take time, discuss the plot of the play and slowly move
toward the exit. The crowding at the egress is to a lesser extent.
On the contrary, the fire presents an extremity where there is
a life and death possibility. Evidently, the turbulence and the
crowding are to a greater extent. Masoud [32] discussed the
only two ways in which conflict can arise—the radial and
tangential forces. We have discussed the radial attraction and
repulsion in the dynamics. In situations of panic, when the
individuals are in close affinity and have bodily contacts, phys-
ical interaction forces, like sliding friction forces come to play.
If di,j < ri,j = ri + rj, where di,j is the distance between xi

and xj and ri is the radius of the ith pedestrian, the tangential
friction force f fr

i,j = κ�(ri,j − di,j)�vt
j,it̂i,j comes into picture,

where �(z) = z if z > 0 and 0 otherwise. This impends the
relative tangential motion of the pedestrians and is propor-
tional to their tangential relative velocity �vt

j,i. Accordingly,
the dynamics representing panic in crowds is given by

dvi

dt
= (ω − 1)vi −

∑

∀j
j �=i

Caij

(
a

xj − xi

‖xi − xj‖m+1
− b

xj − xi

‖xi − xj‖n+1

)

−

⎡

⎢⎢⎣
∑

∀j
j �=i

Crij exp
(
−‖xi − xj‖2

) xj − xi

‖xi − xj‖

+ dwall − xi

‖xi − dwall‖3

⎤

⎥⎥⎦+ Cevac

‖xi − xevac‖(n+1)
· r̂evac

+
∑

∀j
j �=i

f fr
i,j (4)

where the unit vector r̂evac is given by

r̂evac = xevac − xi

‖xi − xevac‖

n ∈ (0, 1) and Cevac is a positive constant. As n approaches 0,
the degree of panic increases. Consequently, there is a greater
rush toward xevac. It is interesting to note that if n equals 1, the
additional term is similar to the attraction terms that exist with
the other individuals of the group. Thus, the introduction of
the term signifying panic may be seen as simulating the sud-
den rush toward the evacuation coordinates that disintegrates
the cooperative attractant-repellent profile and emulates the
instinctive urge for safety and survival.

The parameter choice for a specific practical domain may
be perfected by following a procedure similar to that sug-
gested by Helbing and Johansson [19]. The error reduction
by comparing between video tracking images and the motion
simulated by the dynamics would lead to the best choice. The
stability analysis provides further insight for a general param-
eter choice. Under any given circumstance, once the best fit
is determined, subsequent decisions either on evacuation or
traffic management can be taken from the simulations follow-
ing the dynamics. Emergency situations may be better studied.
Possible aberrations may be taken care of, and decision mak-
ing can be improved via the predictions from the simulations.
In the absence of such mathematical modeling, it would be
immensely difficult to predict and design safety routes for
disaster situations.

Modeling of panic and the rush towards the evacuation point
further helps visualize the severity of the imminent crowd dis-
asters. It would aid in deciding the dimensions of evacuation
structures, explore alternate sites for evacuation and initiate
intelligent crowd control in confined places. Since the simula-
tions can determine the number of people crossing the urgent
egress at different instants of time, it is possible to determine
whether there will be congestion at the exit. This in turn will
help design the egress for a certain maximum number of peo-
ple depending on the crowd density at the particular public
place so that congestion can be avoided even under the worst
of circumstances. Successful implementation of the dynamics
for efficient decision making in high-density crowding sites
will lead to saving millions of lives in future.

III. ANALYZING THE STABILITY OF THE SYSTEM

As we have seen earlier, our proposed dynamics is given by

dvi

dt
= (ω − 1)vi −

∑

∀j
j�=i

Caij

(
a

xj − xi

‖xi − xj‖m+1
− b

xj − xi

‖xi − xj‖n+1

)

−

⎡

⎢⎢⎣
∑

∀j
j�=i

Crij exp
(
−‖xi − xj‖2

) xj − xi

‖xi − xj‖ + dwall − xi

‖xi − dwall‖3

⎤

⎥⎥⎦

= f (xi, vi) (5)

where vector notation is implicitly assumed.
To check for the stability of the system we intuitively con-

struct the Lyapunov energy function (6), shown at the top of
the next page.

For L(xi, xj, vi, vj) to be a Lyapunov energy function, we
first take note of the fact that:

1) Value at Critical Point(s): L(0, 0, 0, 0) = 0.
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L
(
xi, xj, vi, vj

) = −(ω − 1)
∑

∀i

∫ vi

0
ηi dηi + (ω − 1)

∑

∀i

∫ xi

0

⎡

⎢⎢⎣
∑

∀j
j �=i

−Caij

(
a

xj − xi

‖xi − xj‖m+1
− b

xj − xi

‖xi − xj‖n+1

)

−

⎛

⎜⎜⎝
∑

∀j
j �=i

Crij exp
(
−‖ηi − xj‖2

) xj − ηi

‖ηi − xj‖ + dwall − ηi

‖ηi − dwall‖3

⎞

⎟⎟⎠

⎤

⎥⎥⎦ dηi (6)

vi +
∑

∀j
j �=i

Caij

(
b

xj − xi

‖xi − xj‖n+1

)
>
∑

∀j
j �=i

Caij

(
a

xj − xi

‖xi − xj‖m+1

)
+

⎡

⎢⎢⎣
∑

∀j
j �=i

Crij exp
(
−‖xi − xj‖2

) xj − xi

‖xi − xj‖ + dwall − xi

‖xi − dwall‖3

⎤

⎥⎥⎦ (7)

2) Partial Derivatives: The partial derivatives
∂L

∂xi
,

∂L

∂xj
,

∂L

∂vi
,

∂L

∂vj
exist.

3) Value at Other Points: Further L(xi, xj, vi, vj) will be
greater than zero for xi, xj, vi, vj �= 0 if

vi −
∑

∀j
j�=i

Caij

(
a

xj − xi

‖xi − xj‖m+1
− b

xj − xi

‖xi − xj‖n+1

)

−

⎡

⎢⎢⎣
∑

∀j
j�=i

Crij exp
(
−‖xi − xj‖2

) xj − xi

‖xi − xj‖ + dwall − xi

‖xi − dwall‖3

⎤

⎥⎥⎦> 0

i.e., function (7), shown at the top of the page.

This relates to the physical situation where if the intrin-
sic velocity and the attraction between the individuals of the
particular group is greater than the repulsion with other groups,
then the Lyapunov energy function is positive definite and
feasible for further stability analysis. This condition indeed
sheds some light on parameter choice of the dynamics. As
already illustrated by the variation of f (x) with m, n, a, and
b, for the attraction to be more, the difference between m and
n should be large with m > n. b having a larger value than a
increases the attraction. Also Caij being of larger magnitude
than Crij ensures that the intragroup attraction dominates the
intergroup repulsion. The condition for stability and the phys-
ical scenario are in complete consonance as the attraction is
vital for retaining group identity.

Now, to test the stability of the system, we differentiate (6)
under the integral sign to obtain

dL

dt
= ∂L

∂xi

dxi

dt
+ ∂L

∂vi

dvi

dt
= −(ω − 1)

∑

∀i

vi
dvi

dt

+ (ω − 1)
∑

∀i

⎡

⎢⎢⎣
∑

∀j
j�=i

−Caij

(
a

xj − xi

‖xi − xj‖m+1
− b

xj − xi

‖xi − xj‖n+1

)

−
∑

∀j
j�=i

Crij exp
(
−‖xi − xj‖2

) xj − xi

‖xi − xj‖

+ dwall − xi

‖xi − dwall‖3

⎤

⎥⎥⎦
dxi

dt
. (8)

We recognize that dxi/dt is nothing but vi to write

dL

dt
= −(ω − 1)

∑

∀i

vi
dvi

dt
+ (ω − 1)

∑

∀i

×

⎡

⎢⎢⎣
∑

∀j
j�=i

−Caij

(
a

xj − xi

‖xi − xj‖m+1
− b

xj − xi

‖xi − xj‖n+1

)

−
∑

∀j
j�=i

Crij exp
(
−‖xi − xj‖2

) xj − xi

‖xi − xj‖ + dwall − xi

‖xi − dwall‖3

⎤

⎥⎥⎦ vi.

(9)

Equivalently we have (10), shown at the top of the next page.
From (5), we recognize the term in the square brackets to

be nothing but (ω − 1) vi. Hence

dL

dt
= −(ω − 1)

∑

∀i

vi((ω − 1) vi) = −(ω − 1)2
∑

∀i

v2
i < 0.

This thus implies that the given dynamics is asymptotically
stable under condition (7).

IV. LINEARIZATION OF THE DYNAMICS

At this juncture, we would like to linearize the dynamics of
the crowd system that we have stated and carry out a detailed
analysis. The linearization facilitates the study of sensitivity
where the behavior of the system can be clarified under the
influence of a small perturbation around its fixed points. For
the sake of clarity and mathematical lucidity we assume an
entirely 1-D inspection into the system. The system dynamics
for the ith particle is given by

dvi

dt
= (ω − 1)vi +

∑

∀j
j �=i

Caij

(
a

xj − xi

‖xi − xj‖m+1
− b

xj − xi

‖xi − xj‖n+1

)

−

⎡

⎢⎢⎣
∑

∀j
j �=i

Crij exp
(
−‖xi − xj‖2

) xj − xi

‖xi − xj‖ + dwall − xi

‖xi − dwall‖3

⎤

⎥⎥⎦

= f (xi, vi). (11)
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dL

dt
= −(ω − 1)

∑

∀i

vi

⎡

⎢⎢⎣
dvi

dt
−

⎛

⎜⎜⎝
∑

∀j
j �=i

−Caij

(
a

xj − xi

‖xi − xj‖m+1
− b

xj − xi

‖xi − xj‖n+1

)

−
∑

∀j
j �=i

Crij exp
(
−‖xi − xj‖2

) xj − xi

‖xi − xj‖ + dwall − xi

‖xi − dwall‖3

⎞

⎟⎟⎠

⎤

⎥⎥⎦ (10)

For 1-D d, this reduces to

dvd
i

dt
= (ω − 1)vd

i +
∑

∀j
j �=i

Caij

(
a

xd
j − xd

i

‖xd
i − xd

j ‖m+1
− b

xd
j − xd

i

‖xd
i − xd

j ‖n+1

)

−

⎡

⎢⎢⎣
∑

∀j
j �=i

Crij exp
(
−‖xd

i − xd
j ‖2

) xd
j − xd

i

‖xd
i − xd

j ‖
+ dwall − xd

i

‖xd
i − dwall‖3

⎤

⎥⎥⎦

= f
(

xd
i , vd

i

)
. (12)

For 1-D, ‖xi −xj‖ is given simply as |xi −xj|. Further clarity
is introduced if we drop the superscripts to get

dvi

dt
= (ω − 1)vi +

∑

∀j
j �=i

Caij

(
a

xj − xi

|xi − xj|m+1
− b

xj − xi

|xi − xj|n+1

)

−

⎡

⎢⎢⎣
∑

∀j
j �=i

Crij exp
(
−|xi − xj|2

) xj − xi

|xi − xj| + dwall − xi

|xi − dwall|3

⎤

⎥⎥⎦

= f (xi, vi). (13)

This can be simplified to

dvi

dt
= (ω − 1)vi −

∑

∀j
j �=i

Caij

(
a

1
(
xi − xj

)m−1 |xi − xj|

− b
1

(
xi − xj

)n−1 |xi − xj|

)

−

⎡

⎢⎢⎣
∑

∀j
j �=i

Crij exp
(
− (xi − xj

)2) · xj − xi

|xi − xj|

− 1

(xi − dwall)|xi − dwall|

⎤

⎥⎥⎦

= f (xi, vi). (14)

Suppose that the operating point of the equation is at
xi = x∗

i , vi = v∗
i and there are small perturbations of

δxi and δvi about the operating point. Since the dynamics is a
function of xi and vi only, we may as well write

f
(
x∗

i + δxi, v∗
i + δvi

) = d

dt

(
v∗

i + δvi
) = d(δvi)

dt

since all derivatives vanish at the operating point. Attempting
a Taylor series expansion of the function f (x∗

i + δxi, v∗
i + δvi)

and retaining only the first-order derivatives gives

f
(
x∗

i + δxi, v∗
i + δvi

)= f
(
x∗

i , v∗
i

)+ ∂f

∂xi

∣∣∣∣x=x∗
i

v=v∗
i

δxi + ∂f

∂vi

∣∣∣∣x=x∗
i

v=v∗
i

δvi.

(15)

This implies that

d(δvi)

dt
=

⎛

⎜⎜⎝(ω − 1)v∗
i −

∑

∀j
j�=i

Caij

(
a

1
(
x∗

i − xj
)m−1 |x∗

i − xj|

− b
1

(
x∗

i − xj
)n−1 |x∗

i − xj|

)

−

⎡

⎢⎢⎣
∑

∀j
j�=i

Crij exp
(
− (x∗

i − xj
)2) · xj − x∗

i

|x∗
i − xj|

− 1(
x∗

i − dwall
) |x∗

i − dwall|

⎤

⎥⎥⎦

⎞

⎟⎟⎠

+

⎛

⎜⎜⎝
∑

∀j
j�=i

Caij

[
m(

x∗
i − xj

)m |x∗
i − xj|

− n(
x∗

i − xj
)n |x∗

i − xj|

]

−

⎡

⎢⎢⎣
∑

∀j
j�=i

−2Crij
(
x∗

i − xj
)

exp
(
− (x∗

i − xj
)2)

· xj − x∗
i

|x∗
i − xj| + 2

(
x∗

i − dwall
)2 |x∗

i − dwall|

⎤

⎥⎥⎦

⎞

⎟⎟⎠ δxi

+ (ω − 1)δvi. (16)

Taking Laplace transforms of both sides of the above
equation gives

sδvi(s) = 	

s
+ (ω − 1)δvi(s) − �δxi(s) (17)
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where the constants 	 and � are given by

	 = (ω − 1)v∗
i −

∑

∀j
j �=i

Caij

(
a

1
(
x∗

i − xj
)m−1 |x∗

i − xj|

− b
1

(
x∗

i − xj
)n−1 |x∗

i − xj|

)

−

⎡

⎢⎢⎣
∑

∀j
j �=i

Crij exp
(
− (x∗

i − xj
)2) · xj − x∗

i

|x∗
i − xj|

− 1(
x∗

i − dwall
) |x∗

i − dwall|

⎤

⎥⎥⎦ (18)

and

� = −

⎛

⎜⎜⎝
∑

∀j
j �=i

Caij

[
m(

x∗
i − xj

)m |x∗
i − xj|

− n(
x∗

i − xj
)n |x∗

i − xj|

]

−

⎡

⎢⎢⎣
∑

∀j
j �=i

−2Crij
(
x∗

i − xj
)

exp
(
− (x∗

i − xj
)2) · xj − x∗

i

|x∗
i − xj|

+ 2
(
x∗

i − dwall
)2 |x∗

i − dwall|

⎤

⎥⎥⎦

⎞

⎟⎟⎠. (19)

We rearrange this to get

(s − (ω − 1))δvi(s) = 	

s
− �δxi(s)

or, equivalently

s(s − (ω − 1))δvi(s) + s�δxi(s) = 	. (20)

Again, we know that

vi = dxi

dt
.

Hence

v∗
i + δvi = d

dt
(x∗

i + δxi) = d(δxi)

dt
.

Again, Laplace Transforms of both sides of this equation
yields

sδxi(s) = v∗
i

s
+ δvi(s)

which is the same as

− sδvi(s) + s2δxi(s) = v∗
i . (21)

Solving (20) and (21), we get the expressions for
δxi(s) and δvi(s) to be

δxi(s) = 	 + v∗
i (s − (ω − 1))

s{s(s − (ω − 1)) + �} (22a)

δvi(s) = s	 − v∗
i �

s{s(s − (ω − 1)) + �}. (22b)

Fig. 3. Position phase-plot for six groups moving simultaneously in a
2-D field.

This expresses the incremental changes in δxi(s) and δvi(s)
as a function of the inertial factor ω. The linearization seeks
to describe the behavior of the dynamical system near the
equilibrium points. Furthermore, the nature of the equilib-
rium points can be determined from the eigen values of
the Jacobian matrix at the equilibrium point. However, it is
important to note here that the linearization does not emu-
late the complex behavior of the nonlinear dynamics. It just
gives the small perturbations about the equilibrium a math-
ematical form and relates them to the parameters of the
dynamics.

V. MACHINE SIMULATION

The simulations of the proposed crowd model attempt to
illustrate the crowd behavior discussed earlier. The group
identity in pedestrians, the velocity convergence in a group,
avoidance of obstacles, and rush toward the evacuation point
in panic situations are all taken up in this section.

Fig. 3 shows a 2-D plot of the positions when 20 individ-
uals form six groups. The simulations have been performed
with the parameters a = 1, b = 8, m = 12, n = 6, Ca = 1.5,
and Cr = 1.0. The dynamics is stable and is able to represent
the crowd behaviour in accordance with the real-world situa-
tion for even large variations in the parameters. The parameter
choice has been based on the requirement of stability of the
Lyapunov function considering the fact that the intragroup
attraction should be greater than the intergroup repulsion. The
value of b has been kept larger than a, Ca is greater in mag-
nitude than Cr and m, n take the values as in Lennard–Jones
potential or 12 − 6 potential. Here, we see that the velocities
of the individuals in each group converge to a common value
and after convergence, different groups may move with differ-
ent velocities. This supports the inference made in Section II
about group formation in crowds and their subsequent
motion.

Fig. 4 shows the 2-D velocity phase-plot where the velocity
converges to zero when the individuals reach their respective
destinations. However, it is not necessary that all the groups
reach their destination simultaneously. Again, the groups may
move after their members reach a common velocity and in
that case, the velocities of the members of different groups
will converge to different values unique for a group. This
velocity, as mentioned in Section II as desired group-velocity,
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Fig. 4. Velocity phase-plot for six groups moving simultaneously in a
2-D field.

Fig. 5. Velocity phase-plot for six groups moving simultaneously in a 2-D
field. Velocities of the six groups converge to different values.

Fig. 6. Trajectories of pedestrians bend near obstacles.

will create a flocking-type behavior in the system and is shown
in Fig. 5.

The pedestrians change their course of motion when there
is an obstacle present. Fig. 6 shows the bending of the trajec-
tories to avoid the obstacles. The obstacles are marked with
a star.

Figs. 7 and 8 deal with the situation when panic arises. The
degree of panic is kept at n = 0.1 and 0.2 and the motion of
five individuals in the system is plotted. The evacuation point
(i.e., the exit or the elevator) is marked with a star. The figure
shows that the individuals steadily move toward the evacuation

Fig. 7. Successive position plot for evacuation situation with degree of panic
0.1 and Cevac = 1.5. The evacuation point is marked by a star.

Fig. 8. Successive position plot for evacuation situation with degree of panic
0.2 and Cevac = 1.5. The evacuation point is marked by a star.

point. They can move even after reaching the point as people
usually rush forward after the exit and do not stagnate there.

The evacuation procedure is further illustrated in Fig. 9
where a crowd consisting of 15 individuals, trying to escape
through a single exit is shown. The positions of the individuals
during different instances are plotted.

Finally, we have included some instances from real-life
illustrating the group identity in pedestrians, situations of panic
and rush toward the evacuation point. Snapshots from a video
in Fig. 10 show how the pedestrians move in groups and
retain their group identities. In the entire course of motion
in the video snaps, the two groups, one consisting of four
members and the other with two members function as distinc-
tive units. There is velocity convergence; a particular radius
of comfort exists; stable forces continue to operate and sep-
aration from other groups remain. All the features we had
discussed in Section II about pedestrian behavior come to
prominence in these snapshots. The simulations from our
dynamics is thus in resonance with the real-world crowd and
pedestrian behavior. Fig. 9 brings to light the aspect of evac-
uation and panic situations in crowds. In such high-density
crowding situations, the frictional forces come into play. The
rush toward the evacuation point is evident from the simu-
lations. All these complete the link between crowding in the
real world, its modeling by our dynamics and the relevant
simulations.
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(a) (b)

(c) (d)

Fig. 9. Evacuation of a crowd through a single exit: n = 0.2 and Cevac = 1.5. (a) First instant. (b) Second instant. (c) Third instant. (d) Fourth instant.

Fig. 10. Still images from video depicting pedestrian groups—two groups demarcated. (a) First instant. (b) Second instant. (c) Third instant.

VI. CONCLUSION

The ideas that we have proposed in this paper seek to pro-
vide a definite mathematical form to the various kinds of
attractive and repulsive forces that are at work among the
members of a crowd in motion in a 2-D space. We have
sought to provide a fundamental justification behind the phe-
nomena of convergence of velocities of the agents as well as
“evacuation” and “panic” in a crowd system. That the crowd
system forms a stable dynamics has been demonstrated via
the Lyapunov energy function technique using the variable
gradient method. We have justified the veracity of our claims
by showing the working of the same principles in the real

world, demonstrating the mechanics of group formation and
portraying evacuation situations.

The novelty of the dynamics lies in the approach we have
adopted to incorporate the basic features in crowd behavior.
We resorted to the attractant-repellent profile even within a
group so that the concepts of radius of comfort and distance
for maximum attraction could find place. We used a poten-
tial function similar to the Lennard-Jones potential that suited
the requirements of modeling. For the panic situations, this
paper introduces the concept of degree of panic and we pro-
vide examples of situations where the degree of panic is indeed
different. The rush towards the evacuation point is not uniform
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in all situations, but is specific to the scene. All these make
contributions to the existing literature and attempt to extend
the state-of-the-art in this domain of research.

Future work will focus on incorporating efficient evacua-
tion design in modern architectures of public places. This will
include a study of the crowd patterns in the specific site, its
relevant simulation using our dynamics and subsequent deci-
sion making. The dynamics can find applications in other fields
as well. One possibility is its use as a flocking dynamics to
mimic the social behavior of birds.
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