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Abstract— In this paper, we propose a dynamical systems
perspective of the Expectation-Maximization (EM) algorithm.
More precisely, we can analyze the EM algorithm as a nonlinear
state-space dynamical system. The EM algorithm is widely
adopted for data clustering and density estimation in statistics,
control systems, and machine learning. This algorithm belongs
to a large class of iterative algorithms known as proximal
point methods. In particular, we re-interpret limit points of the
EM algorithm and other local maximizers of the likelihood
function it seeks to optimize as equilibria in its dynamical
system representation. Furthermore, we propose to assess its
convergence as asymptotic stability in the sense of Lyapunov.
As a consequence, we proceed by leveraging recent results
regarding discrete-time Lyapunov stability theory in order to
establish asymptotic stability (and thus, convergence) in the
dynamical system representation of the EM algorithm.

I. INTRODUCTION

With the ever-expanding size and complexity of data-
sets used in the field of statistics, control systems, and
machine learning, there has been a growing interest in
developing algorithms that efficiently find the solution to
the optimization problems that arise in these settings. For
example, a fundamental problem in exploratory data mining
is the problem of cluster analysis, where the central task
is to group objects into subgroups (i.e., clusters) such that
the objects in a particular cluster share several characteristics
(or, features) with those that are, in some sense, sufficiently
different from objects in different clusters [1], [2].

The Expectation-Maximization (EM) algorithm [3] is one
of the most popular methods used in distribution-based
clustering analysis and density estimation [4], [5]. Given a
dataset, we can assume that the data is distributed according
to a finite mixture of Gaussian distributions whose parame-
ters are randomly initialized and iteratively improved using
the EM algorithm that seeks to maximize the likelihood that
the data is justified by the distributions. This leads to finding
the finite Gaussian mixture that hopefully best fits the dataset
in question.

A current trend in optimization, machine learning, and
control systems, is that of leveraging on a dynamical systems
interpretation of iterative optimization algorithms [6]–[8].
The key idea is to view the estimates themselves in the iter-
ations of the algorithm as a state vector at different discrete
instances of time (in particular, the initial approximation
is viewed as the initial state), while the mechanism itself
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used to construct each subsequent estimate is modeled as
a state-space dynamical system. Then, local optimizers and
convergence in the optimization algorithm roughly translate
to equilibria and asymptotic stability (in the sense of Lya-
punov) in its dynamical system interpretation.

The convergence of the EM algorithm has been studied
from the point-of-view of general point-to-set notions of
convergence of optimization algorithms such as Zangwill’s
convergence theorem [9]. Works such as [10] and [11] pro-
vide proofs of the convergence of the sequence of estimates
generated by the EM algorithm.

The main contribution of this paper is to present a
dynamical systems perspective of the convergence of the
EM algorithm. The convergence of the EM algorithm is
well known. However, our nonlinear stability analysis ap-
proach is intended to help open the field to new iteration
schemes by possible addition of an artificial external input
in the dynamical system representation of the EM algorithm.
Then, leveraging tools from feedback systems theory, we
could design a control law that translates to an accelerated
convergence of the algorithm for specific subclassess of
distributions.

The rest of the paper is organized as follows. In Section II,
we briefly review the problem of maximum likelihood esti-
mation and the EM algorithm. In Section III, we propose
a dynamical systems perspective of the EM algorithm and
propose a particular generalized EM (GEM) algorithm. In
Section IV we establish our main convergence results by
leveraging discrete-time Lyapunov stability theory. Finally,
Section V concludes the paper.

II. EXPECTATION-MAXIMIZATION ALGORITHM

In this section, we recall the Expectation-Maximization
(EM) algorithm. Let θ ∈ Θ ⊆ Rp be some vector of unknown
(but deterministic) parameters characterizing a distribution
of interest, which we seek to infer from a collected dataset
y ∈ Rm (from now on assumed fixed). To estimate θ from
the dataset y, we first need a statistical model (i.e., an indexed
class of probability distributions {pθ(y) : θ ∈ Θ}). The
function L : Θ→ R given by

L(θ) = pθ(y) (1)

denotes the likelihood function. The objective is to compute
a maximum likelihood estimate (MLE)

θ̂MLE ∈ argmax
θ∈Θ

L(θ). (2)
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We will treat

argmax
θ∈Θ

L(θ) =

{
θ ∈ Θ : L(θ) = max

θ′∈Θ
L(θ′)

}
(3)

as a set, unless it consists of a single point θ?, in which case
we may use θ? = argmaxθ∈Θ L(θ).

Next, we will introduce some assumptions that will ensure
well-definedness throughout this paper.

Assumption 1. L(θ) > 0 for every θ ∈ Θ. ◦

This assumption is simply a mild technical condition
intended to avoid pathological behaviors, and is satisfied by
most mixtures of distributions used in practice (e.g., Gaus-
sian, Poisson, Beta). Furthermore, we surely have L(θ) > 0
for at least some θ ∈ Θ (since, otherwise, the dataset y is
entirely useless regarding maximum likelihood estimation),
and thus it suffices that we disregard from Θ any θ such that
L(θ) = 0.

The underlying assumption for the EM algorithm is that
there exists some latent (non-observable) random vector
x ∈ X ⊆ Rn for which we possess a “complete” statistical
model {pθ(x, y) : x ∈ X , θ ∈ Θ} (as opposed to the “incom-
plete” model {pθ(y) : θ ∈ Θ}), and for which maximizing
the expected value of the complete log-likelihood function
is easier than the incomplete likelihood function. However,
since x is latent, the idea behind the EM algorithm is to
iteratively maximize the expected complete log-likelihood.

Assumption 2. X = {x ∈ Rn : pθ(x, y) > 0} does not
depend on θ ∈ Θ. ◦

Together with Assumption 1, this assumption will
further allow us to avoid certain pathological cases.
Specifically, we can properly define the expected
log-likelihood function (hereafter, also referred to as
the Q-function) Q : Θ×Θ→ R, defined as

Q(θ, θ′)
def
= Epθ′ (·|y)[log pθ(·, y)] (4a)

=

∫
X
pθ′(x|y) log pθ(x, y) dx, (4b)

where pθ′(x|y) = pθ′(x, y)/pθ′(y). With all these ingredi-
ents and assumptions, we summarize the EM algorithm in
Algorithm 1. Notice that, the term Q(·, θk) in Algorithm 1
denotes the expected complete log-likelihood function for
any given iteration k.

Remark 1. In practice, the iterations of Algorithm 1 are
computed until some stopping criterion is achieved, such that
it approximates θ∞. ◦

III. DYNAMICAL SYSTEM INTERPRETATION OF THE EM
ALGORITHM AND CONVERGENCE

Formally, the convergence of the EM algorithm is con-
cerned with the existence and characteristics of the limit
of the sequence {θk}k∈Z+

as k → ∞. In particular, local
convergence refers to the property of the sequence {θk}k∈Z+

converging to the same point θ? for every initial approx-
imation θ0 that is sufficiently close to θ?. On the other

Algorithm 1 Expectation-Maximization (EM)
Input: Observed data y ∈ Rm, complete statistical model
{pθ(x, y) : x ∈ X , θ ∈ Θ}, and initial approximation θ0 of
θ̂MLE ∈ argmax

θ∈Θ
L(θ).

Output: θ∞ such that hopefully pθ∞(y) ≈ max
θ∈Θ
L(θ).

1: for k = 0, 1, 2, . . . do
2: E-step: Compute Q(θ, θk)
3: M-step: Determine θk+1 ∈ argmax

θ∈Θ
Q(θ, θk)

4: end for
5: return θ∞ = lim

k→∞
θk, if it exists.

hand, global convergence refers to convergence to the same
point for any initial approximation. Ideally, θ? is a global
maximizer (or at least a local one) of the likelihood function.
In practice, Algorithm 1 may converge to other stationary
points of the likelihood function [3], [10].

We will now see how the EM algorithm (such as many
other iterative optimization algorithms) can be interpreted as
a dynamical system in state-space, for which convergence
translates to (asymptotic) stability in the sense of Lyapunov.

To start, recall that any discrete-time time-invariant non-
linear dynamical system in state-space can be described by
its dynamics, which are of the form{

θ[k + 1] = F (θ[k]), k ∈ Z+ = {0, 1, 2, . . .},
θ[0] = θ0,

(S)

and where θ[k] denotes the state of the system and
F : Θ→ Θ is some known function. In particular, any F
that satisfies

F (θ′) ∈ argmax
θ∈Θ

Q(θ, θ′) (5)

for every θ′ ∈ Θ represents a particular realization of the
different iterations of Algorithm 1. For the sake of simplicity,
let us make the following assumption.

Assumption 3. Q(·, θ′) has a unique global maximizer in Θ
for each θ′ ∈ Θ. ◦

Remark 2. Assumption 3 does not imply that the like-
lihood function has a unique global maximizer, and sub-
sequently, the MLE may still be non-unique. Furthermore,
under Assumption 3, the sequence {θk}k∈Z+

generated by
Algorithm 1 is unique for each θ0 ∈ Θ, the function
F EM : Θ→ Θ given by

F EM(θ′) = argmax
θ∈Θ

Q(θ, θ′) (EM )

for θ′ ∈ Θ is uniquely defined, and (S) with F = F EM

captures the dynamical evolution emulated by Algorithm 1,
i.e. θ[k] = θk for every k ∈ Z+. ◦

Recall that, for a dynamical system of the form (S), we say
that θ? is an equilibrium of the system if θ[0] = θ? implies
that θ[k] = θ? for every k ∈ Z+. In other words, if θ? is a
fixed point of F (θ), i.e., F (θ?) = θ?. For self-consistency,
we now formally define Lyapunov stability.

164



Definition 1 (Lyapunov stability). Let θ? be an equilibrium
of the dynamical system (S). We say that θ? is stable if the
trajectory θ[k] is arbitrarily close to θ? provided that it starts
sufficiently close to θ?. In other words, if, for any ε > 0,
there exists some δ > 0 such that θ0 ∈ Bδ(θ?) implies that
θ[k] ∈ Bε(θ?) for every k ∈ Z+.

Further, we say that θ? is (locally) asymptotically stable
if, apart from being stable, the trajectory θ[k] converges to
θ? provided that it starts sufficiently close to θ?. In other
words, if θ? is stable and there exists some δ > 0 such that
θ0 ∈ Bδ(θ?), implies that θ[k]→ θ? as k →∞. ◦

From the previous definition, it readily follows that asymp-
totic stability of the trajectory θ[k] generated by (S) with
F = F EM is nearly equivalent to local convergence of
the EM algorithm, since θk = θ[k] → θ? for any θ0

in some sufficiently small compact ball centered around
θ?. Therefore, to establish local convergence of the EM
algorithm from the point of view of the asymptotic stability
of the corresponding dynamical system, we first need to
establish that the points of interest (i.e., the local maxima
of the likelihood function) are equilibria of the system (i.e.,
fixed points of F EM).

Let θ? ∈ Θ be a local maximizer of L(θ). More precisely,
let us start by considering θ? = θ̂MLE ∈ argmaxθ∈Θ L(θ).
Notice that the Q-function can be re-written as follows:

Q(θ, θ′) = Epθ′ (·|y)[log pθ(·, y)] (6a)
= log pθ(y) + Epθ′ (·|y)[log pθ(·|y)] (6b)
= logL(θ)−DKL(θ′‖θ)−H(θ′) (6c)

where DKL(θ′‖θ) denotes the Kullback-Leibler divergence
from pθ(·|y) to pθ′(·|y), and H(θ′) denotes the differential
Shannon entropy of pθ′(·|y) [12]. Since the entropy term
in (6c) does not depend on θ, then

F EM(θ′) = argmax
θ∈Θ

{logL(θ)−DKL(θ′‖θ)} (7)

for θ′ ∈ Θ.

Remark 3. In general, the Kullback-Leibler divergence
from an arbitrary distribution q(x) to another p(x), denoted
as DKL(p‖q), satisfies the following two properties: (i)
DKL(p‖q) ≥ 0 for every p and q, a result known as Gibbs’
inequality; and (ii) DKL(p‖q) = 0 if and only if p = q almost
everywhere. ◦

Therefore, we can now state the following.

Proposition 1. The MLE is an equilibrium of the dynamical
system (S) with F = F EM. �

Proof. Inspecting (7) at θ′ = θ̂MLE = argmaxθ∈Θ L(θ),
it readily follows that logL(θ) and −DKL(θ̂MLE‖θ) are
both maximized at θ = θ̂MLE, which in turn implies that
F EM(θ̂MLE) = θ̂MLE. �

However, it should be clear that the previous argument
does not hold for non-global maximizers of the likelihood
function. One approach to get around this issue is to consider

a specific variant of the generalized EM algorithm (GEM)1.
More precisely, we propose a GEM algorithm that searches
for a global maximizer of Q(θ, θk) in a restricted parameter
space: the closure of the δ-ball Bδ(θk) = {θ ∈ Θ :
‖θ − θk‖ < δ} centered around θk, denoted as Bδ(θk). We
call this algorithm the δ-EM algorithm (not to be confused
with the α-EM algorithm [13]), which is summarized in
Algorithm 2.

Algorithm 2 δ-Expectation-Maximization (δ-EM)
Input: Restricted parameter space radius δ > 0, observed
data y ∈ Rm, complete statistical model {pθ(x, y) : x ∈
X , θ ∈ Θ}, and initial approximation θ0 of θ̂MLE ∈
argmax
θ∈Θ

L(θ).

Output: θ∞ such that hopefully pθ∞(y) ≈ max
θ∈Θ

pθ(y).

1: for k = 1, 2, . . . do
2: E-step: Compute Q(θ, θk)
3: M-step: Determine θk+1 ∈ argmax

θ∈Bδ(θk)∩Θ

Q(θ, θk)

4: end for
5: return θ∞ = lim

k→∞
θk, if it exists.

Next, we make the following simplifying assumption.

Assumption 4. Q(·, θ′) has a unique global maximizer in
Bδ(θ

′) ∩Θ, for every θ′ ∈ Θ and δ > 0. ◦

Naturally, we can interpret Algorithm 2 as the dynamical
system (S) with F = F δ−EM : Θ→ Θ given by

F δ−EM(θ′)
def
= argmax

θ∈Bδ(θk)∩Θ

Q(θ, θ′) (δ-EM )

= argmax
θ∈Bδ(θ′)∩Θ

{logL(θ)−DKL(θ′‖θ)}, (8)

where (8) was derived following a similar argument that
led to (7). Therefore, similar to Proposition 1, we have the
following result.

Proposition 2. Any local maximizer of the likelihood func-
tion is an equilibrium of the dynamical system (S) with
F = F δ−EM, provided that δ > 0 is small enough. �

Proof. Let θ? ∈ Θ be a local maximizer of L(θ). Inspecting
(8) at θ′ = θ?, it readily follows that −DKL(θ?‖θ) is
maximized at θ = θ?. Furthermore, if δ > 0 is small enough,
then logL(θ) is also maximized (in Bδ(θ?)∩Θ) at θ = θ?,
which implies that F δ−EM(θ?) = θ?. �

IV. LOCAL CONVERGENCE THROUGH DISCRETE-TIME
LYAPUNOV STABILITY THEORY

In this section, we will discuss how we can establish the
local convergence of the EM algorithm by exploiting classi-
cal results from Lyapunov stability theory in the dynamical
system interpretation of the EM algorithm.

1A GEM algorithm is any variant of the EM algorithm where the M-step
is replaced by a search of some θk+1 ∈ Θ such that Q(θk+1, θk) >
Q(θk, θk), if one exists (otherwise θk+1 = θk), not necessarily in
argmaxθ∈ΘQ(θ, θk).
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To start, we state the discrete-time version of the Lyapunov
theorem (Theorem 1.2 in [14]). First, recall that a function
V : Θ → R is said to be positive semidefinite, if V(θ) ≥ 0
for every θ ∈ Θ. Furthermore, we say that V is positive
definite with respect to θ? ∈ Θ, if V(θ?) = 0 and V(θ) > 0
for θ ∈ Θ \ {θ?}.

Theorem 1 (Lyapunov Stability [14]). Let θ? ∈ Θ be an
equilibrium of the dynamical system (S) in the interior of
Θ and let δ > 0 be such that Bδ(θ?) ⊆ Θ. Suppose that
F is continuous and there exists some continuous function
V : Bδ(θ

?) → R (called a Lyapunov function) such that
V and −∆V are, respectively, positive definite with respect
to θ? and positive semidefinite, where ∆V(θ)

def
= V(F (θ))−

V(θ). Then, θ? is stable. If −∆V is also positive definite
with respect to θ?, then θ? is asymptotically stable. �

Remark 4. The statement of the theorem, as stated in
Theorem 1.2 of [14], assumes local Lipschitz continuity of
F . This is likely a residual from the classical assumption of
local Lipschitz continuity of F in continuous systems with
dynamics of the form θ̇(t) = F (θ(t)), which is required
by the Picard-Lindelöf theorem to ensure unique existence
of a solution to the differential equation θ̇(t) = F (θ(t))
for each initial state θ(0) = θ0. For discrete-time systems,
on the other hand, the unique existence of the trajectory is
immediate. However, a careful analysis of the argument used
in the proof found in [14] reveals that the continuity of F
is nevertheless implicitly needed to ensure the continuity of
∆V , since the extreme value theorem is invoked for ∆V . ◦

In order to leverage the previous theorem to establish
local convergence of the EM algorithm to local maxima
of the likelihood function, we need to propose a candidate
Lyapunov function. However, before doing so, we need to
ensure that F = F EM is continuous, which is attained by
imposing some regularity on the likelihood function.

Assumption 5. L(θ) is twice continuously differentiable. ◦

Subsequently, we obtain the following result.

Lemma 1. F EM and F δ−EM are both continuous. �

Proof. Under Assumption 5, it readily follows from (4b)
that Q(·, ·) is continuous in both of its arguments. Let
{θ′k}k∈Z+ ⊆ Θ be a sequence converging to θ′ ∈ Θ. Note
that, for each k ∈ Z+, we have Q(F EM(θ′k), θ′k) ≥ Q(θ, θ′k)
for every θ ∈ Θ. Taking the limit when k →∞, and leverag-
ing the continuity of Q, we have Q

(
limk→∞ F EM(θ′k), θ′

)
≥

Q(θ, θ′) for every θ ∈ Θ. Consequently,

Q

(
lim
k→∞

F EM(θ′k), θ′
)

= max
θ∈Θ

Q(θ, θ′), (9)

and therefore,

lim
k→∞

F EM(θ′k) = argmax
θ∈Θ

Q(θ, θ′) = F EM(θ′). (10)

This same argument can be readily adapted for F δ−EM. �

Let θ? ∈ Θ be a local maximizer of L(θ). Once again,
let us start by considering θ? = θ̂MLE ∈ argmaxθ∈Θ L(θ).

From Proposition 1, we know that θ? is an equilibrium
of (S) for F = F EM. Next, a naive guess of a candidate
Lyapunov function would be to consider V(θ) = L(θ),
since this would satisfy V(θ) ≥ 0 for every θ ∈ Θ,
but V(θ?) > 0; hence, it is not a Lyapunov function.
Notwithstanding, if we subtract L(θ?) from the previous
candidate, i.e., V(θ) = L(θ) − L(θ?), then V(θ?) = 0 and
V(θ) < 0 for θ ∈ Θ \ argmaxθ′∈Θ L(θ′). As a consequence,
it should be clear that

V(θ) = L(θ?)− L(θ) (11)

appears to be the ideal candidate, since V(θ) ≥ 0 for every
θ ∈ Θ and V(θ?) = 0. Yet, V may be only positive
semidefinite instead of positive definite (with respect to θ?),
since V(θ) = 0 if and only if θ ∈ argmaxθ′∈Θ L(θ′). To
circumvent this issue, we will need to assume that θ? is an
isolated maximizer2 of L(θ).

Lemma 2. Suppose that θ? ∈ Θ is an isolated maximizer of
L(θ). Then, V : Br(θ

?) → R given by (11) with F = F EM

or F = F δ−EM is positive definite with respect to θ? and
−∆V is positive semidefinite, provided that r > 0 is small
enough. �

Proof. Let us focus on the case F = F EM. The positive
definiteness follows from (11) and the definition of isolated
maximizer. On the other hand, since DKL(θ‖θ) = 0, it
follows from (7) that

logL(F EM(θ)) ≥ logL(θ) +DKL(θ ‖F EM(θ))︸ ︷︷ ︸
≥0

(12)

for every θ ∈ Θ. Thus, from the strict monotonicity of the
logarithm function, it follows that −∆V(θ) = L(F EM(θ))−
L(θ) is indeed positive semidefinite. The case F = F δ−EM

follows by essentially the same argument. �

Remark 5. We are now in conditions to establish the
stability of isolated MLEs in the dynamical system that
represents the EM algorithm. Further, through a similar
argument, the stability of arbitrary isolated local maximizers
of the likelihood for the dynamical system that represents
the δ-EM algorithm with small enough δ > 0. However,
non-asymptotic stability does not seem to translate into any
interesting aspect of the convergence of the EM or δ-EM
algorithms. ◦

In order to establish the positive definiteness of −∆V ,
we first need to characterize the equilibria of the dynamical
systems that represent Algorithms 1 and 2.

Lemma 3. Every fixed point F EM and F δ−EM in the interior
of Θ is a stationary point of the likelihood function. �

Proof. Let θ? ∈ Θ be a fixed point of F EM or F δ−EM in the
interior of Θ. From Assumption 5, and from (7) and (8), it

2We say that θ? ∈ Θ is an isolated maximizer (stationary point) of L(θ)
if it is the only local maximizer (stationary point) of L(θ) in Br(θ?) ∩ Θ
for some small enough r > 0.
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follows that

∂

∂θ

{
logL(θ)−DKL(θ?‖θ)

}∣∣∣
θ=θ?

= 0, (13)

where the divergence term actually vanishes, since θ = θ?

is a (global) minimizer of DKL(θ?‖θ). Thus, it follows that
θ? is a stationary point of L(θ). �

Next, we will need to assume additional regularity on
the likelihood function. A very common assumption for a
parameterized statistical model is for the parameterization to
be injective, meaning that each distribution in the model is
indexed by exactly one instance of the parameter space.

Assumption 6. θ 7→ pθ(·|y) is injective. ◦

Equipped with the last two assumptions (Assumption 5
and 6), we are ready to establish the positive definiteness
of −∆V , and subsequently, the local convergence of Algo-
rithm 1 to ML estimates.

Theorem 2 (Local Convergence of EM to MLE). If
∇2L(θ̂MLE) ≺ 0, then the sequence {θk}k∈Z+

generated by
Algorithm 1 converges to θ̂MLE = argmaxθ∈Θ L(θ) for every
initial approximation θ0 ∈ Θ in a small enough open ball
centered around θ̂MLE. �

Proof. First, recall from Proposition 1 that θ̂MLE is an
equilibrium of (S) with F = F EM (i.e., a fixed point of F EM),
and from Lemma 1 that F EM is continuous. Furthermore,
θ̂MLE is in the interior of Θ since ∇2L(θ̂MLE) ≺ 0.

Let r > 0 be small enough such that θ̂MLE is the only
stationary point of L(θ) in Br(θ̂MLE) ∩ Θ. Such r > 0 can
be chosen since θ̂MLE is itself a stationary point of L(θ)
and ∇2L(θ̂MLE) ≺ 0 (which, together, they ensure isolated
stationarity). In particular, θ̂MLE is an isolated maximizer.
Then, from Lemma 2, the function V : Br(θ̂MLE)→ R given
by (11) with θ? = θ̂MLE is positive definite with respect to
θ̂MLE, and −∆V is positive semidefinite.

Note that the inequality of the divergence term in (12)
is strict for θ ∈ Br(θ̂MLE) \ {θ̂MLE}. This is because, from
Assumption 6, DKL(θ‖F EM(θ)) = 0 if and only if θ is a
fixed point of F EM. But such a point needs to be a stationary
point (see Lemma 3), which would lead to the contradiction
θ = θ̂MLE, since θ̂MLE is the only stationary point of L(θ) in
Br(θ̂MLE) \ {θ̂MLE}. Therefore, logL(F EM(θ)) > logL(θ),
since −∆V(θ) = L(F EM(θ̂MLE)) − L(θ) > 0 for every
θ ∈ Br(θ̂MLE) \ {θ̂MLE}. Finally, since θ̂MLE is a fixed
point of F EM, then ∆V(θ̂MLE) = 0, which concludes that
−∆V is positive definite. The conclusion follows by invoking
Theorem 1, since θ̂MLE was just proved to be asymptotically
stable. �

Theorem 3 (Local Convergence of δ-EM to Local Maxima).
If θ? ∈ Θ is such that ∇L(θ̂?) = 0 and ∇2L(θ?) ≺ 0,
and δ > 0 is small enough, then the sequence {θk}k∈Z+

generated by Algorithm 2 converges to θ? for every initial
approximation θ0 ∈ Θ in a small enough open ball centered
around θ?. �

Proof. The proof follows similar steps to those in the proof
of Theorem 2 with the following adaptations: first, replace
F EM by F δ−EM, and secondly, θ̂MLE by θ?. �

Notice that, the reason why Theorem 3 cannot be readily
adapted for the EM algorithm (as opposed to the δ-EM
algorithm) is that local maximizers may fail to be fixed points
of F EM and therefore, equilibria of (S) with F = F EM. To
circumvent this limitation, we will focus on the limit points
of the EM algorithm. First, recall that θ? ∈ Θ is a fixed
point of Algorithm 1, if there exists some θ0 ∈ Θ such the
θk → θ? as k → ∞ for the sequence {θk}k∈Z+

generated
by Algorithm 1, which is captured by the following result.

Lemma 4. If θ? ∈ Θ is a limit point of Algorithm 1, then it
is also a fixed point of F EM. �

Proof. Let θ0 ∈ Θ be such that θk → θ? as k → ∞,
where {θk}k∈Z+

was generated by Algorithm 1. Then,
by the continuity of F EM, it follows that F EM(θ?) =
limk→∞ F EM(θk) = limk→∞ θk+1 = θ?. �

Remark 6. Notice that, while not every local maximizer of
the likelihood function is a limit point of the EM algorithm,
the same is not true for the δ-EM algorithm, provided that
δ > 0 is sufficiently small and the local maximizer is
sufficiently regular (i.e., an isolated stationary point of the
likelihood function).

Upon Remark 6, and the convergence results established
before, we can now establish the following claim.

Theorem 4 (Local Convergence of EM to its Limit Points).
If θ? ∈ Θ is a limit point of Algorithm 1 such that
∇2L(θ?) ≺ 0, then the sequence {θk}k∈Z+

generated by
Algorithm 1 converges to θ? for every initial approximation
θ0 ∈ Θ in a small enough open ball centered around θ?. �

Proof. The proof follows similar steps to those in the proof
of Theorem 2, where θ̂MLE is replaced by θ?, and followed
by invoking Lemma 4 instead of Proposition 1. �

We conclude this section by exploring how the notion of
exponential stability can be leveraged to bound the conver-
gence rate of the EM algorithm. First, recall that the (linear)
rate of convergence for a sequence {θk}k∈Z+

is the number
0 ≤ µ ≤ 1 given by

µ = lim
k→∞

‖θk+1 − θ?‖
‖θk − θ?‖

, (14)

provided that the limit exists. Additionally, recall that an
equilibrium θ? ∈ Θ of (S) is said to be exponentially stable
if there exist constants c, γ > 0 such that, for every θ0 ∈ Θ
in a sufficiently small open ball centered around θ?, we have
‖θ[k]− θ?‖ ≤ c · e−γk‖θ0 − θ?‖ for every k ∈ Z+.

Remark 7. If θ? is an exponentially stable equilibrium of
(S) with F = F EM, then {θk}k∈Z generated by Algorithm 1
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converges to θ? with linear convergence rate

µ = lim
k→∞

‖θk+1 − θ?‖
‖θk − θ?‖

(15a)

≤ lim
k→∞

c · e−γ×0‖θk − θ?‖
‖θk − θ?‖

(15b)

= c, (15c)

for every initial approximation θ0 ∈ Θ in a sufficiently small
open ball centered around θ?. ◦

The following theorem (adapted from Theorem 5.7 in [14])
allows us to ensure exponential stability, and subsequently to
bound the linear convergence rate, provided our Lyapunov
function satisfies some additional (mild) regularity condi-
tions.

Theorem 5 (Exponential Stability). Let θ? ∈ Θ be an
equilibrium of (S) in the interior of Θ, with Bδ(θ

?) ⊆ Θ
for some small enough δ > 0, and F : Θ → Θ continuous.
Let V : Bδ(θ

?) → R be a continuous and positive definite
function (with respect to θ?) such that

V(θ) ≤ a‖θ − θ?‖2, (16a)

−∆V(θ) ≥ b‖θ − θ?‖2, (16b)

for every θ ∈ Θ, for some constants a, b > 0. Then, θ? is
exponentially stable. More precisely, we have ‖θ[k]− θ?‖ ≤
c · e−γk for every k ∈ Z and θ0 ∈ Br(θ?) with r > 0 small
enough, where c = d/a with

d = lim
δ→0

max
θ∈B̄r(θ?)\Bδ(θ?)

V(θ)

‖θ − θ?‖
, (17)

and γ = log a− log(a− b). �

Equipped with this result, we are now ready to establish
the following sufficient conditions.

Proposition 3. Let θ? ∈ Θ be a limit point of Algorithm 1
such that ∇2L(θ?) ≺ 0. Suppose that there exist constants
a, b > 0 such that

L(θ)− L(θ?) ≥ −a‖θ − θ?‖2, (18a)

L(F EM(θ))− L(θ) ≥ b‖θ − θ?‖2, (18b)

or

L(θ)/L(θ?) ≥ exp{−a‖θ − θ?‖2}, (19a)

DKL(θ‖F EM(θ)) ≥ b‖θ − θ?‖2, (19b)

for every θ ∈ Bδ(θ?) in some small enough δ > 0. Then, θ?

is exponentially stable. �

Proof. From Lemma 4, it follows that θ? is an equilibrium
of (S) with F = F EM. The result follows from invoking
Theorem 5. First, to see that condition (16a) is verified, we
notice that this is equivalent to (18a) for V(θ) = L(θ?)−L(θ)
(which is continuous and positive definite with respect to
θ? in Bδ(θ

?)). On the other hand, condition (16b) readily
follows from (18b). Similarly, (16) follows from (19) for
V(θ) = logL(θ?)− logL(θ) (which is also continuous and
positive definite with respect to θ? in Bδ(θ?)). �

Remark 8. (18a) holds for = −1

2
min

θ∈Bδ(θ?)
λmin[∇2L(θ)]. ◦

Lastly, as consequence of Theorems 4 and 5, we have the
following result.

Theorem 6 (Explicit Bound for Convergence Rate of EM).
Under the conditions of Proposition 3, the linear convergence
rate of Algorithm 1 can be bounded as µ ≤ d/a, where (17)
defined through V(θ) = L(θ?)−L(θ) for the case (18), and
V(θ) = logL(θ?)− logL(θ) for the case (19). �

V. CONCLUSION AND FUTURE WORK

We proposed a dynamical systems perspective of the
Expectation-Maximization (EM) algorithm, by analyzing the
evolution of its estimates as a nonlinear state-space dynam-
ical system. In particular, we drew parallels between limit
points and equilibria, convergence and asymptotic stability,
and we leveraged results on discrete-time Lyapunov stability
theory to establish local convergence results for the EM
algorithm. Finally, we derived conditions that allow us to
construct explicit bounds on the linear convergence rate of
the EM algorithm by establishing exponential stability in
the dynamical system that represents it. Future work will
be dedicated to leveraging tools from integral quadratic con-
straints (IQCs) to study the rate of convergence of EM-like
algorithms by including artificial control inputs optimally
designed through feedback.
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