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Introduction and Motivation

« Many problems modeled as optimization problems
seeking to find the minimum of an objective function
f:R" >R

* For supervised learning, e.g., minimize a loss index that
measures the performance of a neural network on a
certain data set.

* In general, absence of numerically viable closed-form
solutions for such optimization problems.

 Our go-to methods for solving these problems are,
therefore, iterative optimization algorithms.
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Fractlonal Calculus and ARFIMA
Processes

* In this work, we develop an iterative algorithm based on
fractional calculus to solve unconstrained optimization
problems.

* Fractional calculus: Generalization of ordinary calculus
but to non-integer orders.

« Seek to answer questions such as, "What is the half-
derivative of a function™?

* Widely used to model phenomena with long-term memory
and power law dependence of trajectories.

* ARFIMA (Auto-Regressive Fractionally Integrated Moving
Average) processes are a type of time series process that
use the fractional derivative to model long-term memory.

« B is the backward shift operator, and the expansion
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* Although the above is an infinite sum, in practice, we
always consider a finite truncation.
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IF: Iterative Fractional Optimization
Algorithm

* For the purpose of illustration, we consider the function
f(x) = x%, the grid discretization step h € R, the number
of steps of memory Pe N, and its corresponding
functional values f(x,), f(xg — h), ..., f(xog — (P — 1)h)

* First, we notice that the sample autocorrelation function
(SACF) obtained from the aforementioned values
suggests slower than exponential algebraic decay and
statistically significant (for a significance level of 5%)
dependency on past lags, with a large area enclosed by
the composite SACF curve and the horizontal axis.

 This suggests that the ARFIMA processes described
above can successfully predict the behavior of the
functional values obtained.
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sACF plot of the functional values f(xy), f(xo —
h), .., f(xog— (P—1)h), with f(x) = x*,xg = —1,P =
500, and h = 0.01.

* First, we consider pre-specified p and g and find the
fractional-order differencing parameter d from the
Whittle estimation procedure.

« We predict using ARFIMA time series P’ steps into the
future to get the predicted function values y;, ..., yp,

« Since the prediction capabilities are limited, we can
only capture local behavior of evolution of functional
values up to a certain number of time steps into the
future.

 The IF algorithm works in a descent framework, i.e.,
we need to satisfy f(x,,1) < f(xy), so we select the
turning point P" <P where y, = y, > > ypn <
Yp'+1

« Update the current iterate as Xppr1 =
;xk +P"h, f(xx +P"h) < f(xy)
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Schematic representation of the IF algorithm.

Result on a 2-D Problem

« We first minimize the function f(x) = x# + 0.001x%. This
L . . . _[2 0

objective function has a Hessian matrix H = [O 0.002]

with a condition number of 1000. The starting point is

T
chosen to be [\/; %]

 We use P =100 steps of memory, an initial grid
discretization step of h = 0.01 with P' = 100 steps ahead
ARFIMA(4,d,0) time series predictions. The IF algorithm
IS able to attain convergence in 43 iterations while the
gradient descent algorithm with inexact backtracking line
search (to tune the step size) takes 3453 iterations to
converge.

* This suggests the significant advantages of using the IF
algorithm Iin problems where the Hessian is |ll-
conditioned.
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Convergence profile showing the evolution of
functional values with iteration number when the IF

algorithm is used to find the minimizer of f(x) = x{ +
0.001x5.

Result on a Feedforward Neural
Network

 Feedforward neural nets often possess ill-conditioned
Hessians and thus constitute an interesting test bed of
problems.

* We consider the following single-layer perceptron

> I = 0(wx) +wyxy)

« Assume that the activation function is the Gaussian Error

Linear Unit (GELU) given by o(s) = %(1 + erf(\/ii)).

- The weights are arbitrarily initialized such that wf + ws =

1.

 Consider the arrival of a single training sample

(x1,x,,t) = (1,1,0), where t is the true output to be
produced as a result of proper training.

 Assuming a squared error loss function to be minimized

using IF, we obtain convergence in 18 iterations with
w* = [-1.0144 0.9997]" and the optimal value of the
loss function L* = 5.2488 x 107°.

* In contrast, gradient descent with inexact backtracking

line search takes 60 iterations to converge for the
same initialization of the weights.
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