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ABSTRACT
The expectation–maximisation (EM) algorithm is one of themost popular methods used to solve the prob-
lem of parametric distribution-based clustering in unsupervised learning. In this paper, we propose to
analyse a generalised EM (GEM) algorithm in the context of Gaussianmixturemodels, where themaximisa-
tion step in the EM is replaced by an increasing step. We show that this GEM algorithm can be understood
as a linear time-invariant (LTI) system with a feedback nonlinearity. Therefore, we explore some of its con-
vergence properties by leveraging tools from robust control theory. Lastly, we explain how the proposed
GEM can be designed and present a pedagogical example to understand the advantages of the proposed
approach.
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1. Introduction

A fundamental problem in unsupervised learning is the prob-
lem of clustering, where the task in question is to group certain
objects of interest into subgroups called clusters, such that all
objects in a particular cluster share features (in some prede-
fined sense) with each other, but not with objects in other
clusters (Bishop, 2006; Tan et al., 2005).

The expectation–maximisation (EM) algorithm (Dempster
et al., 1977) is one of themost commonly usedmethods in para-
metric distribution-based clustering analysis (Nowak, 2003).
Notably, Gaussian mixture models (GMMs) (i.e. a finite convex
combination ofmultivariate Gaussian distributions) have found
several applications in real-world problems (Bishop, 2006; Tan
et al., 2005). In this setting, clustering consists of estimating the
parameters in a GMM that maximise its likelihood function
(iteratively maximised through the EM algorithm), followed by
assigning to each data point the ‘cluster’ corresponding to its
most likely multivariate Gaussian distribution in the GMM.

The convergence of the EM algorithm is well-studied in the
literature (Wu, 1983), particularly in the context of determin-
ing the parameters of GMMs (Xu & Jordan, 1996). Nonetheless,
it is worth analysing the EM algorithm as a dynamical system
and possibly gain insights that enable us to design more effi-
cient variations of the EM algorithm. Therefore, in Romero
et al. (2019), the authors proposed to change the perspectives
on local optimisers and convergence of the EM algorithm by
assessing, respectively, the equilibria and asymptotic stability (in
the sense of Lyapunov) of a nonlinear dynamical system that
represents the standard EM algorithm, through explicit use of
discrete-time Lyapunov stability theory.

CONTACT Sarthak Chatterjee chatts3@rpi.edu Department of Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute, Troy, NY
12180, USA

In this paper, we build upon the recent work in Romero
et al. (2019) and propose to analyse a generalised EM (GEM)
algorithm (Dempster et al., 1977; Neal & Hinton, 1998) in the
context of Gaussian mixture models, where the maximisation
step in the EM is replaced by an increasing step. GEM algo-
rithms have also been used in applications such as computer
vision (Fessler & Hero, 1995) and noise estimation in commu-
nication channels (Krisjansson et al., 2001), and, in general,
the study of the EM algorithm and its myriad variants con-
stitute an active area of research (Moon, 1996; Roche, 2011).
The main contributions of this work are as follows. First, we
show that this GEM algorithm can be understood as a lin-
ear time-invariant (LTI) system with a feedback nonlinearity.
Secondly, we explore some of its convergence properties by
leveraging tools from robust control theory. Lastly, we explain
how the proposed GEM can be designed, and present a peda-
gogical example to understand the advantages of the proposed
approach.

2. Problem statement

Let θ ∈ � ⊆ R
p be some vector of unknown (but determinis-

tic) parameters characterising a distribution of interest, which
we seek to infer from a collected dataset y ∈ R

d (from now on
assumed fixed) and a statistical model composed by a family
of joint probability density or mass functions (possibly mixed)
pθ (x, y) indexed by θ ∈ �, where

x ∈ X := {x ∈ R
n : pθ (x, y) > 0} (1)

is some latent (hidden) random vector.

© 2021 Informa UK Limited, trading as Taylor & Francis Group
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The EM algorithm seeks to find a local maximiser of the
incomplete likelihood function L : � → R given by

L(θ) := pθ (y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
X
pθ (x, y) dx, if x is continuous,

∑
x∈X

pθ (x, y), if x is discrete.
(2)

The mapping θ �→ pθ (x, y) is, naturally, referred to as the com-
plete likelihood function. To optimise L(θ), the EM algorithm
alternates at each iteration k between two steps. First, in
the expectation step (E-step), we compute Q(θ , θ(k)), defined
through

Q(θ , θ ′) := Epθ ′ (· | y)[log pθ (·, y)] (3a)

=
∫
X
pθ ′(x | y) log pθ (x, y) dx, (3b)

so that Q(·, θ(k)) denotes the expected value of the complete
log-likelihood function with respect to θ = θ(k). Second, in the
maximisation step (M-step), wemaximiseQ(·, θ(k)) and update
the current estimate as that maximiser.

Before formally stating the EM algorithm, let us make
some mild simplifying assumptions that will avoid pathological
behaviour on the Q-function, Q : � × � → R.

Assumption 2.1: X does not depend on θ ∈ � and has positive
Lebesgue measure.

Assumption 2.2: L is twice continuously differentiable in �.

Notice that, from Assumption 2.1, the conditional distri-
bution pθ ′(x | y) = pθ ′(x, y)/pθ ′(y) is well defined in X , since
pθ (y) > 0 for every θ ∈ �. Finally, we make the following sim-
plifying assumption, which makes the M-step well defined.

Assumption 2.3: Q(·, θ ′) has a unique global maximiser in �.

With all these ingredients and assumptions, we summarise
the EM algorithm in Algorithm 1.

However, it is to be kept in mind that when we implement
the EM algorithm, for most parametric distributions, we do not
obtain a closed-form expression for the M-step. As a conse-
quence, to determine a solution (i.e. an approximation) in the
M-step, we need to rely on numerical optimisation schemes. For

Algorithm 1 Expectation- -maximisation (EM).
Input: y ∈ R

d, pθ (x, y), θ(0) ∈ �.
Output: θ̂ .
1: for k = 0, 1, 2, . . . (until some stopping criterion) do
2: E-step: Compute Q(θ , θ(k))
3: M-step: Determine θ(k+1) = argmaxθ∈�Q(θ , θ(k))
4: end for
5: return θ̂ = last computed iteration in {θ(k)}.

instance, we can consider first-order optimisation algorithms
(e.g. gradient ascent), i.e.

θ(k+1) = θ(k) + η
∂Q(θ , θ(k))

∂θ

∣∣∣∣∣
θ=θ(k)

, (4)

for some η > 0. Notice that this could constitute a problem
by itself since first-order algorithms are known to have slow
convergence rates that get aggravated by the increase in the
dimension of the search space. Furthermore, any variant of
Algorithm 1 that does not explicitly maximise Q(·, θ(k)) at the
M-step, but instead is such that Q(θ(k+1), θ(k)) > Q(θ(k), θ(k))
is referred to as a generalised EM (GEM) algorithm.

As previously mentioned, a particularly important class of
models are the Gaussian mixture models (GMMs). In these
models, each component of the mixture is given by

pθi(y) = αi√
det(2π�i)

e−
1
2 (y−μi)

T�−1
i (y−μi), (5)

with i = 1, 2, . . . ,K, y,μi,∈ R
d, �i ∈ R

d×d is positive definite,
and αi ∈ [0, 1] such that

∑K
i=1 αi = 1. The vector of unknown

parameters θ lumps together the scalar parameters within
αi,μi,�i for i ∈ {1, . . . ,K}, as follows:

θ = [αT,μT, vec[�]T]T, (6)

whereαT = [α1, . . . ,αK]T,μT = [μ1, . . . ,μK]T, and vec[�] =
[vec[�1]T, . . . , vec[�K]T]T, with vec(M) denoting the vector
obtained by stacking the column vectors ofM.

In this setting, an alternative is to replace the M-step by (4),
and we obtain a GEM that is able to recover similar (asymp-
totic) convergence rates available in the literature (Balakrishnan
et al., 2017). Nonetheless, (asymptotic) convergence rates can be
misleading as they do not reflect the practical number of iter-
ations required to converge. Furthermore, as it is clear in the
GMM, there are some additional constraints that are implicit
and are not necessarily satisfied by (4) (i.e. α1 + . . . + αK = 1
and �i � 0 for i = 1, . . . ,K).

That said, we need to further understand the transient and
the local behaviour of the GEM algorithm, for which dynamical
systems theory provides us with the proper framework. Subse-
quently, in this paper, we propose to step away from the dynam-
ics without an explicit control (e.g. the M-step in Algorithm 1),
towards one where we can consider an additive control, and
therefore, study its properties.

In summary, we seek to address the following questions.

Problem 2.1: (1) Is it possible to replace the M-step in
Algorithm 1 by a parameter update step given by

θ(k+1) = θ(k) + u(k), (7)

where we can design a feedback control law u(k) = φ(θ(k))
to obtain a GEM algorithm?

(2) What insights (particularlywith respect to design) can such
control laws provide us with?

3. Main results

In this section, we provide the main result of the paper. Specif-
ically, we show how we can leverage tools from control systems
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theory to analyse a GEM algorithm as an LTI system connected
in feedback with a nonlinearity. Furthermore, we also show how
to derive the convergence rate for such an algorithm using tools
from robust control. Lastly, we briefly describe how we can look
into certain aspects of designing new GEM-like algorithms.

3.1 GEMalgorithms as LTI systemswith a feedback
nonlinearity

We first show how we can leverage tools from dynamical sys-
tems and control theory to cast a GEM algorithm into the
framework of an LTI system with an interconnected feedback
nonlinearity. We begin with the following lemma that provides
us with expressions for the closed-form solution of the problem
of estimating the parameters of a GMM using a generalised EM
algorithm.

Lemma 3.1 (Dempster et al. (1977)): Given K possible mixtures
in theGMM, and independently and identically distributed (i.i.d.)
samples {x(t)}Nt=1, we can estimate the parameter vector θ bymax-
imising the log-likelihoodL(θ), that, in the context of a GMMhas
a closed-form solution given as follows:

α
(k+1)
j = 1

N

N∑
t=1

h(k)
j (t), (8)

μ
(k+1)
j = 1∑N

t=1 h
(k)
j (t)

N∑
t=1

h(k)
j (t)x(t), (9)

and

�
(k+1)
j = 1∑N

t=1 h
(k)
j (t)

N∑
t=1

h(k)
j (t)z(t),(k+1)

j (z(t),(k+1)
j )T, (10)

with

z(t),(k+1)
j = x(t) − μ

(k+1)
j , (11)

where the posterior probabilities h(k)
j are given by

h(k)
j (t) =

α
(k)
j p(x(t) | μ(k)

j ,�(k)
j )∑K

i=1 α
(k)
i p(x(t) | μ(k)

i ,�(k)
i )

. (12)

With the above closed-form solution, if we, instead, consider
a ‘shifted-update’ of the covariance as

�
(k+1)
j = 1∑N

t=1 h
(k)
j (t)

N∑
t=1

h(k)
j (t)z(t),(k)j (z(t),(k)j )T (13)

(i.e. the update of �(k+1)
j is done with respect to μ

(k)
j instead of

μ
(k+1)
j ), we can summarise in the following lemma the relation-

ships between the updates of the parameters of the GMM that
we aim to estimate, i.e. the mixing weights, the means, and the
covariance matrices.

Lemma 3.2: For the shifted updates of the covariance matrices
considered in (13), the following relations hold:

α(k+1) − α(k) = Pα(k)
∂L
∂α

∣∣∣∣
α=α(k)

, (14)

μ
(k+1)
j − μ

(k)
j = P

μ
(k)
j

∂L
∂μj

∣∣∣∣
μj=μ

(k)
j

, (15)

and

vec[�(k+1)
j ] − vec[�(k)

j ] = P
�

(k)
j

∂L
∂ vec[�j]

∣∣∣∣
�j=�

(k)
j

, (16)

with

Pα(k) = 1
N

(diag[α(k)
1 , . . . ,α(k)

K ] − α(k)α(k)T), (17)

P
μ

(k)
j

= 1∑N
t=1 h

(k)
j (t)

�
(k)
j , (18)

P
�

(k)
j

= 2∑N
t=1 h

(k)
j (t)

(�
(k)
j ⊗ �

(k)
j ), (19)

where j ∈ {1, . . . ,K} denotes the indices of the mixture com-
ponents, k denotes the iteration number, and ⊗ denotes the
Kronecker product.

Therefore, by combining Equations (14)–(16) of Lemma 3.2,
we can briefly write the evolution of the parameters as

θ(k+1) = θ(k) + P(θ(k))∇L(θ(k)), (20)

where

P(θ) = diag
[
Pα ,Pμ1 , . . . ,PμK ,P�1 , . . . , P�K

]
. (21)

In this case, the term φ(θ(k)) = P(θ(k))∇L(θ(k)) could be
understood as a nonlinearity driving the system. Nonetheless, it
is not guaranteed that some essential implicit constraints hold,
i.e.

θ(k+1) ∈ � =
⎧⎨
⎩θ :

K∑
j=1

αj = 1,�j = �T
j � 0

⎫⎬
⎭ . (22)

Therefore, towards incorporating these inter-dependencies, we
can consider the ‘shifted’ subspace

�s =
⎧⎨
⎩θ ′ :

K∑
j=1

αj = 0

⎫⎬
⎭ , (23)

where θ ′ = θ − θ0 ∈ � for a shift θ0. Furthermore, let the coor-
dinates of θ ′ under the basis {e1, . . . , em} be denoted by θc,
where the ei-s are canonical (orthonormal) basis vectors and
m is the dimension of �. Then, θ − θ0 = Eθc, or equivalently,
θ = Eθc + θ0, where E = [e1, . . . , em].

Now, notice that ETθ = ETEθc + ETθ0 (or, equivalently, θc =
ETθ − ETθ0 ), by multiplying both sides by ET, and noticing
that ETE = I. Thus, θ ′ = θ − θ0 = ETE(θ − θ0) = EETθ ′ ∈ �,
by observing that� is an open convex set sincewe only consider
local differential properties of the log-likelihood, and conse-
quently, the constraint on positive definiteness of �j holds.

Therefore,

θ(k+1) = EET(θ(k) + P(θ(k))∇L(θ(k)))

= θ(k) + EETP(θ(k))∇L(θ(k)) (24)
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Algorithm 2 Projection-based GEM (PB-GEM).
Input: y ∈ R

d, pθ (y), θ(0) ∈ �.
Output: θ̂ .
1: for k = 0, 1, 2, . . . (until some stopping criterion) do

2: θ(k+1) = θ(k) + EET P(θ(k))
∂L
∂θ

∣∣∣∣
θ=θ(k)

3: end for
4: return θ̂ = last computed iteration in {θ(k)}.

belongs to�, which constitutes the parameter update of a GEM
algorithm that we shall refer to as projection-based GEM (PB-
GEM) – see Algorithm 2.

Consequently, the term φ(θ(k)) = EETP(θ(k)) ∂L
∂θ

|θ=θ(k) can
be understood as a nonlinearity driving a linear time-invariant
(LTI) system. As such, we can consider φ(θ) = ∇f (θ) to be
(locally) Lipschitz and forwhich there is a (locally) strongly con-
vex function f. Before stating the theorem that shows the rate
of convergence for the PB-GEM algorithm, we introduce the
following preliminary definitions and results.

Definition 3.3 (Q-convergence (Jay, 2001)): Given a sequence
{θ(k)} → θ
 with θ(k) �= θ
 for k = 0, 1, 2, . . ., the order of con-
vergence β is a nonnegative number satisfying

lim sup
k→∞

‖θ(k+1) − θ
‖
‖θ(k) − θ
‖β

= ρ < ∞, (25)

with ρ being the rate of convergence.

Definition 3.4 (Sector Integral Quadratic Constraint (IQC)
for the gradient map): For a strongly convex function f with
strong convexity parameterμf , having Lipschitz continuous gra-
dients with Lipschitz constant L, the gradient map ∇f satisfies
the sector IQC defined by

[
θ − θ


∇f (θ) − ∇f (θ
)

]
T

[ −2μf LI (L + μf )I
(L + μf )I −2I

]

×
[

θ − θ


∇f (θ) − ∇f (θ
)

]
≥ 0 (26)

for all θ , θ
.

Lemma 3.5 (A modified version of Theorem 4 in Lessard
et al. (2016)): Consider a first-order linear optimisation scheme
represented as the dynamical system

ξ [k + 1] = Aξ [k] + Bu[k], (27a)

θ[k] = Cξ [k] + Du[k], (27b)

u[k] = φ(θ[k]), (27c)

with nonlinearity φ(θ) = ∇f (θ). If ∇f satisfies the sector IQC
defined by (26), then the linear matrix inequality (LMI)

[
AT

BT

]
R

[
AT

BT

]T

−
[
ρ2R 0
0 0

]
+ λ

[
C D
0 I

]T

×
[ −2μf LI (L + μf )I
(L + μf )I −2I

] [
C D
0 I

]
� 0 (28)

is feasible for some R � 0, λ ≥ 0. Specifically, {ξ [k]} → ξ
 with
respect to a suitable norm ‖ · ‖, with a convergence rate of ρ,
where ξ
 is a fixed point of (27a) satisfying ξ
 = Aξ
.

With the above ingredients, we are ready to state our
main result concerning the convergence rate of the PB-GEM
algorithm, which builds upon tools from robust control theory.

Theorem 3.6: Consider a function f (θ) that is μf -strongly
convex, has an L-Lipschitz gradient, and satisfies ∇f (θ) =
EETP(θ)∇L(θ). Then, θ(k+1) = θ(k) + u(k), with u(k) =
∇f (θ(k)) is a GEM algorithm (i.e. {θ(k)} → θ
, where θ
 is the
maximum-likelihood estimate) with convergence rate ρ bounded
by

ρ ≤ max{|1 − μf |, |1 − L|}. (29)

Proof: That the Projection-Based GEM algorithm presented in
Algorithm 2 indeed constitutes a generalised EM can be shown
using an argument similar to one presented in Salakhutdinov
et al. (2003). In particular, if Assumption 2.3 is satisfied formod-
els of the exponential family (a special case being the GMMs
considered in this paper), the PB-GEM algorithm evolves in
a way such that we have L(θ(k+1)) > L(θ(k)) for all k ∈ Z+,
provided ∇L(θ(0)) �= 0. Secondly, we notice that the iterative
scheme can be represented as the LTI system in (27a) with a
feedback nonlinearity given by φ(·) = ∇f (·).

Due to the regularity of f and the fact that the PB-GEM
algorithm can be represented as the dynamical system (27a),
with A = B = C = I and D = 0, we can invoke the results of
Definition 3.4 and Lemma 3.5 to recover bounds on the con-
vergence rate of the PB-GEM algorithm using the LMI in (28).
Remarkably, due to the general block-diagonal structure of opti-
misation algorithms like gradient ascent, we can then use a
‘lossless dimensionality reduction argument’ and reduce the
case of the feasibility of the above LMI to analyse the corre-
sponding semidefinite program for the single-dimensional case
without loss of generality (Lessard et al., 2016).

This ascertains the local convergence for themaximumof the
function f as long as the following LMI holds:

[
(1 − ρ2)R R

R R

]
+ λ

[−2μf L L + μf
L + μf −2

]
� 0, (30)

for some scalar R> 0, and λ ≥ 0, where ρ ∈ (0, 1) denotes the
convergence rate. Since R is a scalar, we can consider R = 1
without loss of generality. This gives us the LMI

[
1 − ρ2 − 2μf Lλ 1 + λ(L + μf )
1 + λ(L + μf ) 1 − 2λ

]
� 0. (31)

As a consequence, to ensure the negative semidefiniteness of the
above matrix, both 1 − 2λ (which is present in the bottom right
block) and the Schur complement of the bottom right block
need to be negative semidefinite. Thus, we have

λ ≥ 1
2
, (32a)

0 ≥ 1 − ρ2 − 2μf Lλ − (λ(L + μf ) + 1)2

1 − 2λ
. (32b)
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Combining these two, we have

ρ2 ≥ 1 − 2μf Lλ − (λ(L + μf ) + 1)2

1 − 2λ
, (33)

which yields ρ ≤ max{|1 − μf |, |1 − L|}. �

Additionally, the transformationmatrix P(·) also provides us
with valuable insights regarding the rate of convergence of the
PB-GEM algorithm. Indeed, differentiating the equation

FPB−GEM(θ) = θ + EETP(θ)∇L(θ), (34)

we have

∂FPB−GEM

∂θ
(θ) = I + EET ∂P

∂θ
(θ)∇L(θ) + EETP(θ)S(θ),

(35)
where ∂P

∂θ
= [ ∂P

∂θ1
. . . ∂P

∂θm ] with θ = [θ1, . . . , θm],

∇L(θ) =

⎡
⎢⎣

∇L(θ) . . . 0
...

. . .
...

0 . . . ∇L(θ)

⎤
⎥⎦ , (36)

and S(θ) = ∇2L(θ) denotes the Hessian matrix of L(·).
Therefore, near a stationary point θ = θ
 ofL(θ) over which

P(θ) is bounded, we have

P(θ) ≈ (EET)−1
(

∂FPB−GEM

∂θ
(θ) − I

)
[S(θ)]−1. (37)

As a consequence, it follows that, under the aforementioned
conditions, the projection-based GEM algorithm exhibits
superlinear convergence when ∇L(θ) approaches zero. In par-
ticular, the nature of convergence is dictated by the eigenvalues
of the matrix ∂FPB−GEM

∂θ
(θ). If the eigenvalues are near zero,

then the transformation matrix scales the EM update step by
approximately the scaled negative inverse Hessian, and the EM
algorithm behaves like Newton’s method. On the other hand,
if the eigenvalues are near unity (in absolute value), then the
PB-GEM algorithm exhibits first-order convergence.

3.2 Towards the design of GEMalgorithms

We can, therefore, propose to design a GEM algorithm by
changing the control law. Nonetheless, we have to be careful
with the updates on the different parameters as, implicitly, they
possess constraints on the updates. Specifically, we require the
α-s to sum up to unity, and the �-s to be symmetric positive
definite.

Subsequently, in what follows, we focus only on the change of
the mean by considering the following weighted function fW(θ)

such that fW(θ) satisfies

∇fW(θ) = EETDP(θ)∇L(θ), (38)

where D = diag(IK ,W, Id2K), and with W ∈ R
dK×dK being a

weight matrix that mixes the different means. In particular, we
can consider W = diag(β1Id, . . . ,βKId) where βi > 0 denotes
a scaling of the mean similar to a learning rate but applied only

Algorithm 3Weighted projection-based GEM (W-PB-GEM).
Input: y ∈ R

d, pθ (y), θ(0) ∈ �,W ∈ R
dK×dK .

Output: θ̂ .
1: for k = 0, 1, 2, . . . (until some stopping criterion) do

2: θ(k+1) = θ(k) + EET DP(θ(k))
∂L
∂θ

∣∣∣∣
θ=θ(k)

3: end for
4: return θ̂ = last computed iteration in {θ(k)}.

on the component rates of the means of the mixture model.
Note that we can extend this design step only on the means
because the means are the only parameters of the GMMs under
consideration that do not have implicit constraints associated
with them. This allows us to introduce the following parameter
update step:

θ(k+1) = θ(k) + EETDP(θ(k))∇L(θ(k)), (39)

for an algorithm which we will refer to as the weighted
projection-based GEM (W-PB-GEM) algorithm – see
Algorithm 3.

As a result, we have the following corollary on the conver-
gence rate of the W-PB-GEM algorithm.

Corollary 3.7: Suppose that there exists a function fW(θ) that
is μf -strongly convex, has an L-Lipschitz gradient, and satisfies
∇fW(θ) = EETDP(θ)∇L(θ), where D = diag(IK ,W, Id2K), and
with W ∈ R

dK×dK being the matrix of weights that determine
the component-wise mixture of the means of the GMM whose
parameters are to be estimated. Then, θ(k+1) = θ(k) + u(k), with
u(k) = ∇fW(θ(k)) is a GEM algorithm (i.e. {θ(k)} → θ
, where
θ
 is the maximum-likelihood estimate) with convergence rate ρ

bounded by

ρ ≤ max{|1 − μf |, |1 − L|}. (40)

Remark 3.1: The convergence rates obtained for the W-PB-
GEM algorithm are the same as those obtained for the PB-GEM
algorithm. It is to be noted, however, that the update equa-
tions associated with the α-s and the �-s cannot be arbitrar-
ily changed because of the explicit constraints associated with
them.

Remark 3.2: It is worth mentioning here that the convergence
rates as obtained in (29) and (40) are merely upper bounds, and,
unfortunately, do not shed any light on the transient behaviour
of the PB-GEM or W-PB-GEM algorithm – see the inset of
Figures 2 and 4.

4. Pedagogical examples

In this section, we seek to demonstrate a pedagogical example
that shows the efficacy of the methods extended in this paper
in identifying the parameters of unknown GMMs. To do this,
we first sample 1000 arbitrary points from a mixture of two
Gaussians with the following parameters:

μ

1 =

[
1
1

]
and μ


2 =
[−1
−1

]
,
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�

1 =

[
1 0
0 1

]
and �


2 =
[
1 0
0 1

]
,

and

α
 =
[
0.5
0.5

]
.

Further, we initialised the algorithms with the following
parameters:

μ1 =
[−3
3

]
, μ2 =

[
3

−3

]
,

such that they lie on the linewhich is orthogonal to the direction
defined by μ


1 and μ

2. Additionally, �1 and �2 are initialised

to be arbitrary positive definite matrices and α is arbitrarily
initialised such that α1 + α2 = 1.

4.1 The PB-GEMalgorithm

We first consider a pedagogical example to demonstrate the
performance of the proposed PB-GEM algorithm on estimat-
ing the parameters of the synthetic Gaussian mixture model
specified above. The results of running the PB-GEM algorithm

Figure 1. 1000 randomly sampled points from a synthetic two-component Gaus-
sian mixture model and the contour plots of the initial and final estimated prob-
ability distribution functions using the PB-GEM algorithm. The circles show the
initial positions, and the left and right traces show the evolutions of μ1 and μ2,
respectively.

to determine the parameters of the above mixture model are
shown in Figures 1 and 2. We see that the proposed PB-GEM
algorithm is able to successfully determine the parameters of
the synthetic GMM from which the points have been sampled.
Convergence is obtained in 316 iterations (i.e. to attain a relative
change in log-likelihood smaller than 10−10).

4.2 TheW-PB-GEMalgorithm

Next, we test the performance of the W-PB-GEM algorithm.
The matrix of weightsW that determine the mixture of propor-
tions during the updates of the means is given by

W =
[
0.996I2 0

0 0.996I2

]
.

The results of running theW-PB-GEM algorithmwith the same
initialisations for μ1,μ2,�1,�2, and α are documented in Fig-
ures 3 and 4. Convergence is obtained in 279 iterations with the
same stopping criterion used in the previous section.

4.3 Multi-class classification

In what follows, we also present an illustrative example where

Figure 5. 1000 randomly sampled points from a synthetic four-component Gaus-
sianmixturemodel and the contour plots of the initial and final estimated probabil-
ity distribution functions using the PB-GEM algorithm. The circles show the initial
positions, and the traces show the evolutions ofμi , i = 1, 2, 3, 4.

Figure 2. Plot of negative log-likelihood versus the number of iterations for the PB-GEM algorithm. The transient behaviour between iterations 125 and 140 is shown in
the inset.
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Figure 3. 1000 randomly sampled points from a synthetic two-component Gaussian mixture model and the contour plots of the initial and final estimated probability
distribution functions using the W-PB-GEM algorithm. The circles show the initial positions, and the left and right traces show the evolutions ofμ1 andμ2, respectively.

Figure 4. Plot of negative log-likelihood versus the number of iterations for the W-PB-GEM algorithm. The transient behaviour between iterations 125 and 140 is shown
in the inset.

Figure 7. Means and standard deviations of the negative log-likelihood function for 30 instances of the PB-GEM andW-PB-GEM algorithm for the two-class classification
example running with the same initial conditions for a particular instance.
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both the PB-GEM and the W-PB-GEM algorithms are used in
order to identify the parameters of a GMMwith more than two
Gaussians. We sample 1000 arbitrary points from a mixture of
four Gaussians with the following parameters:

μ

1 =

[
1
1

]
, μ


2 =
[−1
−1

]
, μ


3 =
[
1

−1

]
, and

μ

4 =

[−1
1

]
, �


1 = �

2 = �


3 = �

4 =

[
1 0
0 1

]
,

and

α
 =

⎡
⎢⎢⎣
0.25
0.25
0.25
0.25

⎤
⎥⎥⎦ .

Further, we initialised both the algorithms with the following
parameters:

μ1 =
[−3
3

]
, μ2 =

[
3

−3

]
, μ3 =

[−3
−3

]
, and

μ4 =
[
3
3

]
.

Additionally, �1,�2,�3, and �4 are initialised to be arbitrary
positive definite matrices and α is arbitrarily initialised such
that

∑4
i=1 αi = 1. The matrix of weightsW that determine the

mixture of proportions during the updates of the means for the
W-PB-GEM algorithm is once again given by

W =
[
0.996I2 0

0 0.996I2

]
.

The results of running the PB-GEM and W-PB-GEM algo-
rithms for this problem are shown in Figures 5 and 6,
respectively. The results are similar to the case on two-class
classification. Convergence (i.e. attaining a relative change in
log-likelihood smaller than 10−10) is obtained in 1822 itera-
tions for the PB-GEM algorithm and in 472 iterations for the
W-PB-GEM algorithm.

4.4 Discussion of results

The reason why the initial conditions on the means are selected
such that they lie on a line orthogonal to the means character-
ising the synthetic GMM considered above is to intentionally

Figure 6. 1000 randomly sampled points from a synthetic four-component Gaus-
sian mixture model and the contour plots of the initial and final estimated prob-
ability distribution functions using the W-PB-GEM algorithm. The circles show the
initial positions, and the traces show the evolutions ofμi , i = 1, 2, 3, 4.

make the convergence of the PB-GEM and W-PB-GEM algo-
rithms more difficult. We also illustrate in Figure 7 a compara-
tive study of the PB-GEM and W-PB-GEM algorithms for the
two-class example (the matrix W was selected identical to the
one in Section 4.2) by plotting the mean and standard devia-
tion of the negative log-likelihood function for 30 instances of
both the algorithms when they are initialised with the same set
of parameters for a particular instance. In general, such worst-
case initialisation conditions are useful in order to gain insights
into the transient behaviours of such algorithms.

It is also instructive here to note that for the problem of iden-
tifying the parameters of a high-dimensionalGMM, the number
of iterations to convergence would grow exponentially. In such
a case, it would be extremely important to have convergence to
the actual parameters in as few iterations as possible, since each
iteration would involve a pass over the entire dataset, and when
the dataset is large, having a lower number of iterations to con-
vergence would amount to a reduction in the amount of time
taken for the estimation of the parameters.

We also reiterate that the convergence rates presented in (29)
and (40) are merely upper bounds. As demonstrated in the
insets of Figures 2 and 4, these have no relationship with the
transient behaviours of the PB-GEM and W-PB-GEM algo-
rithms. Although, in practice, we can improve the convergence
rates of these algorithms by designing new and more efficient
varieties (as detailed in the construction of the W-PB-GEM
algorithm), the upper bound of the obtained convergence rates
does not change.

5. Conclusions and future work

In this paper, we analysed a GEM algorithm to estimate the
parameters of GMMs from a dynamical systems perspective. In
particular, we showed that this algorithm can be understood as
an LTI system connected in feedback with a nonlinearity. The
convergence properties of the proposed algorithm are studied
by utilising tools from robust control theory. We also explored
the simple design of this class of GEM algorithms and provided
evidence using pedagogical examples that it might be possible
to improve the transient and the practical convergence of these
algorithms despite the fact that they exhibit the same asymp-
totic convergence rates. Future work will consist of using tools
from adaptive systems theory to accelerate practical conver-
gence properties for GEM algorithms. Additionally, fundamen-
tal connections exist between the EM algorithm and proximal
point methods (Chrétien &Hero, 2000, 2008; Figueiredo, 2008)
and future work will focus on analysing proximal interpre-
tations of the EM algorithm using tools from robust control
theory (Fazlyab et al., 2018; Lessard et al., 2016).
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