From Dempster to Lyapunov: A Dynamical Systems Approach to EM Algorithm Convergence

Orlando Romero Sarthak Chatterjee

Rensselaer Polytechnic Institute

Arthur P. Dempster (1929 -)

EM Classification Example

Framework – Parameter Estimation

- Incomplete data: $y \in \mathbb{R}^m$
- Complete data: $z = (x, y), x \in \mathcal{X}$ is latent

V⊾ $V(x_{1}, x_{2})$ grad V grad V $\frac{dX}{dt}$

Aleksandr Lyapunov (1857 - 1918)

Lyapunov Function Example

Dynamical Systems Overview

- State-space model: $\theta[k+1] = F(\theta[k])$ with $\theta[0] = \theta_0$.
- θ^* is an *equilibrium* if $\theta_0 = \theta^* \implies \theta[k] = \theta^*$ for every k.
- θ^* is a stable equilibrium if $\forall \varepsilon > 0, \exists \delta > 0$ such that $\|\theta_0 \theta^*\| \leq \delta \implies$ $\|\theta[k] - \theta^{\star}\| \leq \varepsilon$ for every k.

- Unknown parameter: $\theta \in \Theta$
- Statistical model: $\{p_{\theta}(x, y) : \theta \in \Theta, x \in \mathcal{X}\}$
- $\hat{\theta}_{\text{ML}} \stackrel{\text{def}}{=} \operatorname{argmax} \mathcal{L}(\theta)$, where $\mathcal{L}(\theta) = p_{\theta}(y) = \int_{\mathcal{X}} p_{\theta}(x, y) \, \mathrm{d}x$
- How to compute $\hat{\theta}_{ML}$?

Expectation-Maximization (EM) Algorithm

•
$$Q(\theta, \theta') \stackrel{\text{def}}{=} \mathbb{E}_{p_{\theta'}(x|y)}[\log p_{\theta}(x, y)] = \int_{\mathcal{X}} \frac{p_{\theta'}(x, y)}{p_{\theta'}(y)} \log p_{\theta}(x, y) \, \mathrm{d}x$$

- 1: initialize $\theta_0 \in \Theta$
 - 2: for $k = 1, 2, \dots$ do
 - **E-step:** Compute $Q(\theta, \theta_k)$ 3:
 - **M-step:** Determine $\theta_{k+1} = \operatorname{argmax} Q(\theta, \theta_k)$ 4:
 - 5: end for
 - 6: return θ_{∞}
- Assumptions:
 - $-p_{\theta}(y) > 0$ for every $\theta \in \Theta$.
 - $-\mathcal{X} = \{x \in \mathbb{R}^n : p_{\theta}(x, y) > 0\}$ does not depend on $\theta \in \Theta$.
 - for each $\theta' \in \Theta$, the function $Q(\cdot, \theta')$ as a unique global maximizer.
 - $-\mathcal{L}(\theta)$ is twice continuously differentiable.
 - $-\theta \mapsto p(\cdot|y)$ is injective.

- θ^* is an *asymptotically stable* equilibrium if it is stable and $\exists \delta > 0$ such that $\|\theta_0 - \theta^{\star}\| \leq \delta \implies \lim_{k \to \infty} \theta[k] = \theta^{\star}$.
- θ^{\star} is an *exponentially stable* equilibrium if it is stable and $\exists \delta, c, \gamma > 0$ such that $\|\theta_0 - \theta^{\star}\| \leq \delta \implies \|\theta[k] - \theta^{\star}\| \leq c \cdot e^{-\gamma k} \|\theta_0 - \theta^{\star}\|$ for every k.

A Dynamical Systems Interpretation of EM

- $F(\theta') = F^{\text{EM}}(\theta') = \operatorname{argmax}_{\theta \in \Theta} Q(\theta, \theta') \implies \theta[k] = \theta_k.$
- θ^* is an equilibrium for $F = F^{\text{EM}} \iff \theta^*$ is a fixed point of EM.
- θ^* is asymptotically stable \implies EM is locally convergent to θ^* .

Lyapunov Theorem

Let θ^* be an equilibrium. If there exists a continuous function $\mathcal{V}: \Theta \to \mathbb{R}$ (*Lyapunov function*) such that

- \mathcal{V} is positive definite (w.r.t. θ^*), *i.e.* $\mathcal{V}(\theta^*) = 0$ and $\mathcal{V}(\theta) > 0$ for $\theta \neq \theta^*$;
- $-\Delta \mathcal{V}$ is positive definite, where $\Delta \mathcal{V}(\theta) \stackrel{\text{def}}{=} \mathcal{V}(F(\theta)) \mathcal{V}(\theta)$,

then θ^* is asymptotically stable. Furthermore, if $\mathcal{V}(\theta) \leq a \|\theta - \theta^*\|^2$ and $-\Delta \mathcal{V}(\theta) \geq b \|\theta - \theta^{\star}\|^2$, then θ^{\star} is exponentially stable, with c = d/a, $d = \lim_{\delta \to 0} \max_{\delta > ||\theta - \theta_0|| > \frac{1}{5}} \frac{\mathcal{V}(\theta)}{||\theta - \theta^*||}, \text{ and } \gamma = \log a - \log(a - b).$

Main Results

• Theorem 1: If $\nabla^2 \mathcal{L}(\hat{\theta}_{ML}) \prec 0$ then $\hat{\theta}_{ML}$ is asymptotically stable, and thus EM is locally convergent to $\hat{\theta}_{ML}$. • Proof:

- $-Q(\theta, \theta') = \log \mathcal{L}(\theta) \mathcal{D}_{\mathbf{KL}}[p_{\theta'}(\cdot|y) \| p_{\theta}(\cdot|y)] \mathcal{H}[p_{\theta'}(\cdot|y)]$ $-F^{\mathrm{EM}}(\hat{\theta}_{\mathrm{ML}}) = \operatorname{argmax}_{\theta \in \Theta} \{ \log \mathcal{L}(\theta) - \mathcal{D}_{\mathrm{KL}}[p_{\hat{\theta}_{\mathrm{MI}}}(\cdot|y) \| p_{\theta}(\cdot|y)] \}$ $-(\log \mathcal{L}(\theta), \mathcal{D}_{\mathrm{KL}}[p_{\hat{\theta}_{\mathrm{MI}}}(\cdot|y) \| p_{\theta}(\cdot|y)] \text{ are maximized at } \theta = \hat{\theta}_{\mathrm{ML}}) \implies F^{\mathrm{EM}}(\hat{\theta}_{\mathrm{ML}}) = \hat{\theta}_{\mathrm{ML}}.$ $-\mathcal{V}(\theta) = \mathcal{L}(\hat{\theta}_{\mathrm{ML}}) - \mathcal{L}(\theta)$ is positive definite w.r.t. $\hat{\theta}_{\mathrm{ML}}$. $-\log \mathcal{L}(F^{\text{EM}}(\theta)) - \underbrace{\mathcal{D}_{\text{KL}}[p_{\theta}(\cdot|y) \| p_{F^{\text{EM}}(\theta)}(\cdot|y)]}_{>0 \ (\theta \neq \hat{\theta}_{\text{ML}})} \geq \log \mathcal{L}(\theta) - \underbrace{\mathcal{D}_{\text{KL}}[p_{\theta}(\cdot|y) \| p_{\theta}(\cdot|y)]}_{=0} \implies -\Delta \mathcal{V}(\theta) = \mathcal{L}(F^{\text{EM}}(\theta)) - \mathcal{L}(\theta) \text{ is also positive definite w.r.t. } \hat{\theta}_{\text{ML}}.$
- Theorem 2: If θ^* is a limit point of EM such that $\nabla^2 \mathcal{L}(\theta^*) \prec 0$, then it is asymptotically stable and thus EM is locally convergent to θ^* .

• Proof:

- (F^{EM} is continuous and θ^* is a limit point) $\implies F(\theta^*) = \theta^*$.
- Repeat same argument for $\mathcal{V}(\theta) = \mathcal{L}(\theta^*) \mathcal{L}(\theta)$ w.r.t. θ^* in a small enough open ball around θ^* .
- Theorem 3: In the same conditions of Theorem 2, and assuming $\mathcal{L}(F^{\text{EM}}(\theta)) \mathcal{L}(\theta) \ge b \|\theta \theta^{\star}\|^2$ for some b > 0, then θ^{\star} is exponentially stable and thus the linear convergence rate of EM can be explicitly bounded in terms of $\mathcal{L}(\theta)$.

O. Romero, S. Chatterjee, and S. Pequito, "Convergence of the Expectation-Maximization Algorithm Through Discrete-Time Lyapunov Stability Theory" (under review).