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Figure 9.8 Illustration of the EM algorithm using the Old Faithful set as used for the illustration of the K-means
algorithm in Figure 9.1. See the text for details.

and the M step, for reasons that will become apparent shortly. In the expectation
step, or E step, we use the current values for the parameters to evaluate the posterior
probabilities, or responsibilities, given by (9.13). We then use these probabilities in
the maximization step, or M step, to re-estimate the means, covariances, and mix-
ing coefficients using the results (9.17), (9.19), and (9.22). Note that in so doing
we first evaluate the new means using (9.17) and then use these new values to find
the covariances using (9.19), in keeping with the corresponding result for a single
Gaussian distribution. We shall show that each update to the parameters resulting
from an E step followed by an M step is guaranteed to increase the log likelihood
function. In practice, the algorithm is deemed to have converged when the changeSection 9.4
in the log likelihood function, or alternatively in the parameters, falls below some
threshold. We illustrate the EM algorithm for a mixture of two Gaussians applied to
the rescaled Old Faithful data set in Figure 9.8. Here a mixture of two Gaussians
is used, with centres initialized using the same values as for the K-means algorithm
in Figure 9.1, and with precision matrices initialized to be proportional to the unit
matrix. Plot (a) shows the data points in green, together with the initial configura-
tion of the mixture model in which the one standard-deviation contours for the two

EM Classification Example

Framework – Parameter Estimation
• Incomplete data: y ∈ Rm

•Complete data: z = (x, y), x ∈ X is latent

•Unknown parameter: θ ∈ Θ

• Statistical model: {pθ(x, y) : θ ∈ Θ, x ∈ X}

• θ̂ML
def
= argmax

θ∈Θ
L(θ), where L(θ) = pθ(y) =

∫
X pθ(x, y) dx

•How to compute θ̂ML?

Expectation-Maximization (EM) Algorithm

•Q(θ, θ′) def
= Epθ′(x|y)[log pθ(x, y)] =

∫
X

pθ′(x, y)

pθ′(y)
log pθ(x, y) dx.

• 1: initialize θ0 ∈ Θ
2: for k = 1, 2, . . . do
3: E-step: Compute Q(θ, θk)
4: M-step: Determine θk+1 = argmax

θ∈Θ
Q(θ, θk)

5: end for
6: return θ∞

•Assumptions:
– pθ(y) > 0 for every θ ∈ Θ.
–X = {x ∈ Rn : pθ(x, y) > 0} does not depend on θ ∈ Θ.
– for each θ′ ∈ Θ, the function Q(·, θ′) as a unique global maximizer.
–L(θ) is twice continuously differentiable.
– θ 7→ p(·|y) is injective.

Aleksandr Lyapunov
(1857 – 1918) Lyapunov Function Example

Dynamical Systems Overview
• State-space model: θ[k + 1] = F (θ[k]) with θ[0] = θ0.

• θ? is an equilibrium if θ0 = θ? =⇒ θ[k] = θ? for every k.

• θ? is a stable equilibrium if ∀ε > 0,∃δ > 0 such that ‖θ0−θ?‖ ≤ δ =⇒
‖θ[k]− θ?‖ ≤ ε for every k.

• θ? is an asymptotically stable equilibrium if it is stable and ∃δ > 0 such
that ‖θ0 − θ?‖ ≤ δ =⇒ limk→∞ θ[k] = θ?.

• θ? is an exponentially stable equilibrium if it is stable and ∃δ, c, γ > 0
such that ‖θ0 − θ?‖ ≤ δ =⇒ ‖θ[k] − θ?‖ ≤ c · e−γk‖θ0 − θ?‖ for
every k.

A Dynamical Systems Interpretation of EM
• F (θ′) = FEM(θ′) = argmaxθ∈ΘQ(θ, θ′) =⇒ θ[k] = θk.

• θ? is an equilibrium for F = FEM ⇐⇒ θ? is a fixed point of EM .

• θ? is asymptotically stable =⇒ EM is locally convergent to θ?.

Lyapunov Theorem
Let θ? be an equilibrium. If there exists a continuous function V : Θ→ R
(Lyapunov function) such that

• V is positive definite (w.r.t. θ?), i.e. V(θ?) = 0 and V(θ) > 0 for θ 6= θ?;

• −∆V is positive definite, where ∆V(θ)
def
= V(F (θ))− V(θ),

then θ? is asymptotically stable. Furthermore, if V(θ) ≤ a‖θ − θ?‖2 and
−∆V(θ) ≥ b‖θ − θ?‖2, then θ? is exponentially stable, with c = d/a,
d = limδ→0 maxδ≥‖θ−θ0‖≥1

δ

V(θ)
‖θ−θ?‖, and γ = log a− log(a− b).

Main Results
• Theorem 1: If ∇2L(θ̂ML) ≺ 0 then θ̂ML is asymptotically stable, and thus EM is locally convergent to θ̂ML.

• Proof:
–Q(θ, θ′) = logL(θ)−DKL[pθ′(·|y)‖pθ(·|y)]−H[pθ′(·|y)]

– FEM(θ̂ML) = argmaxθ∈Θ{logL(θ)−DKL[p
θ̂ML

(·|y)‖pθ(·|y)]}

– ( logL(θ),DKL[p
θ̂ML

(·|y)‖pθ(·|y)] are maximized at θ = θ̂ML) =⇒ FEM(θ̂ML) = θ̂ML.

– V(θ) = L(θ̂ML)− L(θ) is positive definite w.r.t. θ̂ML.
– logL(FEM(θ))−DKL[pθ(·|y)‖pF EM(θ)(·|y)]︸ ︷︷ ︸

>0 (θ 6=θ̂ML)

≥ logL(θ)−DKL[pθ(·|y)‖pθ(·|y)]︸ ︷︷ ︸
=0

=⇒ −∆V(θ) = L(FEM(θ))− L(θ) is also positive definite w.r.t. θ̂ML.

• Theorem 2: If θ? is a limit point of EM such that∇2L(θ?) ≺ 0, then it is asymptotically stable and thus EM is locally convergent to θ?.

• Proof:
– (FEM is continuous and θ? is a limit point) =⇒ F (θ?) = θ?.
– Repeat same argument for V(θ) = L(θ?)− L(θ) w.r.t. θ? in a small enough open ball around θ?.

• Theorem 3: In the same conditions of Theorem 2, and assuming L(FEM(θ))− L(θ) ≥ b‖θ − θ?‖2 for some b > 0, then θ? is exponentially stable and thus
the linear convergence rate of EM can be explicitly bounded in terms of L(θ).
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