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Abstract. The William Lowell Putnam Mathematical Competition, an un-
dergraduate intercollegiate math competition often abbreviated to “The Put-
nam”, has had some beautiful integrals show up in it. This (hopefully dynamic)
article is an attempt to curate integration problems of the Putnam exam in
one place.

Problem 1: 1987 – B1
Problem 1 is Problem B1 from the 1987 Putnam, which asks us to find the

value of

I =

∫ 4

2

√
ln(9− x)√

ln(9− x) +
√

ln(x+ 3)
dx.

We use here the fact that∫b

a

f(x) dx =

∫b

a

f(a+ b− x) dx.

So, carrying out the change of variables x → 6− x, we have

I =

∫ 4

2

√
ln(9− (6− x))√

ln(9− (6− x)) +
√
ln(6− x+ 3)

dx

and, so,

I =

∫ 4

2

√
ln(x+ 3)√

ln(x+ 3) +
√

ln(9− x)
dx.

Then, we can write (since we have 2 representations for the same integral I)

2I =

∫ 4

2

√
ln(x+ 3) +

√
ln(9− x)√

ln(x+ 3) +
√
ln(9− x)

dx =

∫ 4

2

dx = 2.
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Thus,

I =

∫ 4

2

√
ln(9− x)√

ln(9− x) +
√
ln(x+ 3)

dx = 1 .

Bonus: Use a similar technique to evaluate

J =

∫π/2

0

dx

1+ (tan x)
√
2
,

which was problem A3 on the 1980 Putnam.

Problem 2: 1985 – B5
Problem B5 of the 1985 Putnam asks us to find the value of

I =

∫∞
0

t−1/2e−1985(t+t−1) dt.

The problem also states that we can assume that
∫∞
−∞ e−x2

dx =
√
π.

We first make the substitution
√
t = u or, dt

2
√
t
= du. Our integral then

becomes

I = 2

∫∞
0

e−1985(u2+u−2) du

= 2

∫∞
0

e−1985(u2+u−2−2+2) du

= 2e−3970

∫∞
0

e−1985(u−u−1)2 du.

Now, let u−1 = y so that −du
u2 = dy. Thus,

I = 2e−3970

∫ 0

∞ e−1985(y−1−y)2 −dy

y2
.

This y is just a dummy variable, and so we can revert to u so that

I = 2e−3970

∫∞
0

1

u2
e−1985(u−u−1)2 du.

We now have two different representations for the same integral I. Adding them
both, we have

2I = 2e−3970

∫∞
0

(
1+

1

u2

)
e−1985(u−u−1)2 du.
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This is actually wonderful because we can spot a recognizable differential ele-
ment in the parentheses! We can now write

√
1985(u− u−1) = x, so that(

1+
1

u2

)
du =

dx√
1985

.

Thus,

I =
e−3970

√
1985

∫∞
−∞ e−x2

dx︸ ︷︷ ︸√
π

= e−3970

√
π

1985
.

Remarks: When choosing the limits of integration for the final step, we have

used the fact that lim
x→0+

(
x−

1

x

)
= −∞ as the corresponding two-sided limit

does not exist.
Additionally, this integral is also related to the modified Bessel function of the

second kind, which has the integral representation

Kα(x) =

∫∞
0

e−x cosh t cosh(αt) dt.

To see how, we start with

K1/2(x) =

∫∞
0

e−x cosh t cosh

(
t

2

)
dt,

or,

K1/2(x) =
1

2

∫∞
0

e−x(et+e−t)/2et/2 dt︸ ︷︷ ︸
I1

+
1

2

∫∞
0

e−x(et+e−t)/2e−t/2 dt︸ ︷︷ ︸
I2

,

where we have used the definition of the hyperbolic cosine. Now, for I1, we use
(with slight abuse of notation) the substitution u = et to get

I1 =
1

2

∫∞
1

e−x(u+u−1)/2u1/2du

u
=

1

2

∫∞
1

u−1/2e−x(u+u−1)/2 du,

and the substitution u = e−t for the integral I2 to get

I2 =
1

2

∫ 0

1

e−x(u+u−1)/2u1/2

(
−du

u

)
=

1

2

∫ 1

0

u−1/2e−x(u+u−1)/2 du.

Both I1 and I2 have the same integrand but the limits of integration are 0 to 1
and 1 to ∞. Therefore,

K1/2(x) = I1 + I2 =
1

2

∫∞
0

u−1/2e−x(u+u−1)/2 du
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and

2K1/2(3970) =

∫∞
0

u−1/2e−1985(u+u−1) du = I.

Special functions do not often have nice closed-form expressions but we are in
luck here! The modified Bessel function of the second kind admits a closed-form
expression for half-odd integer orders. In particular,

K1/2(x) =

√
π

2x
e−x.

So,

I = 2K1/2(3970) = 2

√
π

2 · 3970
e−3970 = e−3970

√
π

1985
,

yielding the same value as above.

Problem 3: 1997 – A3
The integral of this section is Problem A3 from the 1997 Putnam. In particular,

we are asked to evaluate

I =

∫∞
0

(
x−

x3

2
+

x5

2 · 4
−

x7

2 · 4 · 6
+ · · ·

)
(
1+

x2

22
+

x4

22 · 42
+

x6

22 · 42 · 62
+ · · ·

)
dx.

This ominous-looking integral is not too hard once we realize how its different
constituents fit. The infinite series in the left parenthesis is just

xe−x2/2 = x

(
1−

x2

2
+

(−x2/2)2

2!
+

(−x2/2)3

3!
+ · · ·

)
=

(
x−

x3

2
+

x5

2 · 4
−

x7

2 · 4 · 6
+ · · ·

)
.

Therefore,

I =

∫∞
0

xe−x2/2

∞∑
n=0

x2n

22n(n!)2
dx =

∞∑
n=0

∫∞
0

xe−x2/2 x2n

22n(n!)2
dx,

where we can justify the interchange of the sum and the integral by the Monotone
Convergence Theorem. Next, let us pull out the n dependent terms outside the
integral to give us

I =

∞∑
n=0

1

22n(n!)2

∫∞
0

xe−x2/2x2n dx.
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For the integral, let us substitute t = x2/2 and so dt = x dx. Thus,

I =

∞∑
n=0

1

22n(n!)2

∫∞
0

e−t(2t)n dt =

∞∑
n=0

1

2n(n!)2

∫∞
0

e−ttn dt

=

∞∑
n=0

1

2n(n!)2
Γ(n+ 1),

using the fundamental definition of the Gamma function. For every non-negative
integer n, Γ(n+ 1) = n! and so

I =

∞∑
n=0

1

2n(n!)2
n! =

∞∑
n=0

(1/2)n

n!
= e1/2 =

√
e .

Problem 4: 1992 – A2
Next, we look at Problem A2 from the 1992 Putnam. The problem goes as

follows: Define C(α) to be the coefficient of x1992 in the power series expansion
about x = 0 of (1+ x)α. Evaluate

I =

∫ 1

0

C(−y− 1)

(
1

y+ 1
+

1

y+ 2
+

1

y+ 3
+ · · ·+ 1

y+ 1992

)
dy.

For starters, let us figure out what C(α) looks like. Indeed,

C(α) =
α(α− 1)(α− 2) · · · (α− 1991)

1992!
,

and, so,

C(−y− 1) =
(−y− 1)(−y− 2)(−y− 3) · · · (−y− 1992)

1992!
,

or,

C(−y− 1) =
(y+ 1)(y+ 2)(y+ 3) · · · (y+ 1992)

1992!
,

and so,

C(−y− 1)

(
1

y+ 1
+

1

y+ 2
+

1

y+ 3
+ · · ·+ 1

y+ 1992

)
=

d

dy

(
(y+ 1)(y+ 2)(y+ 3) · · · (y+ 1992)

1992!

)
.
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So our integral is just∫ 1

0

d

dy

(
(y+ 1)(y+ 2)(y+ 3) · · · (y+ 1992)

1992!

)
dy

=
(y+ 1)(y+ 2)(y+ 3) · · · (y+ 1992)

1992!

∣∣∣∣∣
1

0

,

or,

I =
1993!− 1992!

1992!
=

1993 · 1992!− 1992!

1992!
= 1992.

Problem 5: 2005 – A5
Our objective for this section is to try and deal with Problem A5 from the

2005 Putnam. In particular, we are asked to evaluate

I =

∫ 1

0

ln(x+ 1)

x2 + 1
dx.

We try and evaluate the above integral by parametrizing it and then differen-
tiating under the integral sign. Accordingly, let

J(t) =

∫ 1

0

ln(tx+ 1)

x2 + 1
dx.

Then,

J ′(t) =

∫ 1

0

∂

∂t

ln(tx+ 1)

x2 + 1
dx =

∫ 1

0

x

(x2 + 1)(tx+ 1)
dx,

or, decomposing into partial fractions,

J ′(t) =

∫ 1

0

(
t

(t2 + 1)(x2 + 1)
+

x

(t2 + 1)(x2 + 1)
−

t

(t2 + 1)(tx+ 1)

)
dx.

All of the terms in the parentheses have elementary integrals, and we can write

J ′(t) =
t

t2 + 1
arctan x+

1

2(t2 + 1)
ln(x2 + 1) −

1

t2 + 1
ln(tx+ 1)

∣∣∣∣∣
1

0

=
πt

4(t2 + 1)
+

ln 2

2(t2 + 1)
−

ln(t+ 1)

t2 + 1
.

Now, if we integrate the RHS between 0 and t (switching the variable from t to
z in the last term, to avoid confusion between the variable of integration and the
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parameter associated with the function J(·)), we get

J(t) − J(0) =
π

8
ln(t2 + 1)

∣∣∣t
0
+

1

2
ln 2 arctan(t)

∣∣∣t
0
−

∫ t

0

ln(z+ 1)

z2 + 1
dz.

Note that J(1) = I and J(0) = 0. Therefore with t = 1 in the above we have,

I =
π

8
ln(t2 + 1)

∣∣∣1
0
+

1

2
ln 2 arctan(t)

∣∣∣1
0
−

∫ 1

0

ln(z+ 1)

z2 + 1
dz︸ ︷︷ ︸

I

.

Hence,

2I =
π

8
ln 2+

π

8
ln 2

and,

I =
π

8
ln 2 .

Remarks: This integral is called Serret’s integral, after Joseph-Alfred Serret
(of “Frenet-Serret frame” fame), who evaluated it in 1844 [1].

Bonus:

• Try evaluating the integral using the substitution x = tan z.
• Try evaluating the integral using the substitution (1+ x)(1+ z) = 2.

Problem 6: 1989 – A2
Next, we try and solve Problem A2 of the 1989 Putnam. The problem asks us

to find the value of

I =

∫a

0

∫b

0

emax{b2x2,a2y2} dy dx,

where a,b > 0.
Understanding the geometry of the region of integration is the key to solving

this problem, and, indeed, we illustrate this in Figure 1. The region of integration
is the rectangle R = {(x,y) | 0 ⩽ x ⩽ a, 0 ⩽ y ⩽ b}. We divide this rectangle into
two parts along the diagonal ay = bx. From inspection, it is clear that in the red
sub-region of the rectangle, emax{b2x2,a2y2} = eb

2x2
and in the blue sub-region,
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Figure 1. The geometry of Problem 6.

emax{b2x2,a2y2} = ea
2y2

. Then, we can split I into the two double integrals

I =

∫x=a

x=0

∫y=bx/a

y=0

eb
2x2

dy dx+

∫y=b

y=0

∫x=ay/b

x=0

ea
2y2

dx dy

=

∫a

0

bx

a
eb

2x2

dx+

∫b

0

ay

b
ea

2y2

dy

=
1

2ab
eb

2x2
∣∣∣a
0
+

1

2ab
ea

2y2
∣∣∣b
0

=
ea

2b2
− 1

2ab
+

ea
2b2

− 1

2ab

=
ea

2b2
− 1

ab
.

Problem 7: 2016 – A3
Problem A3 from the 2016 Putnam, is a personal favorite of mine, a wonderful

marriage between functional equations and integration.
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Problem: Suppose that f is a function from R to R such that

f(x) + f

(
1−

1

x

)
= arctan x

for all real x ̸= 0. (As usual, y = arctan xmeans−π/2 < y < π/2 and tany = x).
Evaluate ∫ 1

0

f(x) dx.

At the heart of this problem is actually the function

g(x) = 1−
1

x
.

Let us iterate this map to find

g(g(x)) = 1−
1

1− 1
x

= 1−
x

x− 1
=

1

1− x
,

and

g(g(g(x))) =
1

1− (1− 1/x)
= x,

and, hence, this map is actually a 3-cycle. Sweet, because we can now write

f(x) + f

(
1−

1

x

)
= arctan x, (1)

and then first swap x with 1− 1/x to write

f

(
1−

1

x

)
+ f

(
1

1− x

)
= arctan

(
1−

1

x

)
, (2)

and then once again swap x with 1− 1/x to write

f

(
1

1− x

)
+ f(x) = arctan

(
1

1− x

)
. (3)

We now add equations (1) and (3) and then subtract equation (2) from the result
to yield

2f(x) = arctan x+ arctan

(
1

1− x

)
− arctan

(
x− 1

x

)
. (4)

Therefore,

2f(1− x) = arctan(1− x) + arctan

(
1

x

)
− arctan

(
x

x− 1

)
. (5)
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Now, we can add equations (4) and (5) to give us

2f(x) + 2f(1− x) =

[
arctan x+ arctan

(
1

x

)]
+

[
arctan

(
1

1− x

)
+ arctan(1− x)

]
−

[
arctan

(
x− 1

x

)
+ arctan

(
x

x− 1

)]
.

We note that our domain of integration is (0, 1), which means that the value
of the expression in the last square bracket is actually −π/2 since arctan(x) +
arctan(1/x) = π/2 if x > 0 and arctan(x) + arctan(1/x) = −π/2 if x < 0.
Therefore,

f(x) + f(1− x) =
1

2

(π
2
+

π

2
+

π

2

)
=

3π

4
.

We need to find

I =

∫ 1

0

f(x) dx =

∫ 1

0

f(1− x) dx,

where the second equality is a consequence of∫b

a

f(x) dx =

∫b

a

f(a+ b− x) dx

for a sufficiently well-behaved f. So then,

2I =

∫ 1

0

(f(x) + f(1− x)) dx =
3π

4
,

and, so,

I =
3π

8
.

Remarks:

(a) While utilizing the relationship between the sum of the inverse tangent
of a quantity and the inverse tangent of its reciprocal is by far the most
elegant way of solving this problem, one also has a gnarly way of solving
this problem by directly integrating both sides of equation (4) with respect
to x between 0 and 1. Indeed, if we integrate by parts, we get∫ 1

0

arctan(x) dx =
π

4
−

ln(2)

2
,∫ 1

0

arctan

(
1

1− x

)
dx =

π

4
+

ln(2)

2
,
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and ∫ 1

0

arctan

(
x− 1

x

)
dx = −

π

4
.

We then finish things off by adding the first two of the above results,
subtracting the third, and (noting that we actually have obtained twice
our required integral) dividing the result by 2 to yield 3π/8.

(b) The map

g : x 7→ x− 1

x
:=

ax+ b

cx+ d

when a = 1,b = −1, c = 1,d = 0. This is what is called a linear fractional
transformation. If we put the elements a,b, c,d into a matrix

M =

(
a b
c d

)
=

(
1 −1
1 0

)
,

iterating the map is equivalent to finding the powers of M. Indeed,

M2 =

(
0 −1
1 −1

)
,

which is equivalent to the statement

g(g(x)) =
−1

x− 1
=

1

1− x
,

as we obtained earlier! How do we find g−1(x)? You guessed it right, by
inverting M! (Of course, the inverse needs to exist, and to guarantee that
we need det(M) = ad− bc ̸= 0) Thus,

M−1 =

(
0 1
−1 1

)
,

which corresponds to

g−1(x) =
1

1− x
,

a fact that we can corroborate by an independent calculation. Linear
fractional transformations and the beautiful theory of the matrix algebra
associated with them show up in all sorts of wonderful places. But that
is a story for some other time!

(c) Bonus 1: Can you use a similar technique (iterating a map to reveal a
cycle) to solve the functional equation

f(x) + f

(
1

1− x

)
= x.
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The answer is

f(x) =
x3 − x+ 1

2x(x− 1)
.

(d) Bonus 2 (Putnam 1971 – B2): Can you use a similar technique (it-
erating a map to reveal a cycle) to solve the functional equation

f(x) + f

(
x− 1

x

)
= 1+ x.

The answer is

f(x) =
x3 − x2 − 1

2x(x− 1)
.

Problem 8: 1990 – B1
Problem B1 of the 1990 Putnam asks us to find all real-valued continuously

differentiable functions f on the real line such that for all x

(f(x))2 =

∫x

0

(
(f(t))2 + (f ′(t))2

)
dt+ 1990. (†)

We start with differentiating both sides of the above condition. This gives us

2f(x)f ′(x) = (f(x))2 + (f ′(x))2,

which means that

(f(x))2 + (f ′(x))2 − 2f(x)f ′(x) = 0 =⇒ (f(x) − f ′(x))2 = 0.

This immediately implies that

f ′(x) = f(x),

and the only solutions of the above differential equation are

f(x) = Cex.

What remains is to evaluate the constant C. From (†), we have that (f(0))2 =
1990, or, f(0) = ±

√
1990. But f(0) = C. Hence, the only real-valued continu-

ously differentiable functions f on the real line that satisfy (†) are

f(x) = ±
√
1990ex.
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Problem 9: 1993 – A5
Again, this is probably one of my most favorite problems from the Putnam.

Problem A5 from 1993 asks us to show that∫−10

−100

(
x2 − x

x3 − 3x+ 1

)2

dx+

∫ 1
11

1
101

(
x2 − x

x3 − 3x+ 1

)2

dx+

∫ 11
10

101
100

(
x2 − x

x3 − 3x+ 1

)2

dx

is a rational number.
As in Problem 7, the trick here is find a transformation for which the integrand

is invariant under the transformation. If

g(x) =

(
x2 − x

x3 − 3x+ 1

)2

,

then,

g

(
1

1− x

)
= g

(
1−

1

x

)
= g(x).

Define

I =

∫−10

−100

(
x2 − x

x3 − 3x+ 1

)2

dx,

J =

∫ 1
11

1
101

(
x2 − x

x3 − 3x+ 1

)2

dx,

and

K =

∫ 11
10

101
100

(
x2 − x

x3 − 3x+ 1

)2

dx.

Carrying out the substitution x 7→ 1− 1/x in J gives us

J =

∫−10

−100

(
x2 − x

x3 − 3x+ 1

)2
dx

x2
,

and carrying out the substitution x 7→ 1/(1− x) in K gives us

K =

∫−10

−100

(
x2 − x

x3 − 3x+ 1

)2
dx

(1− x)2
.
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Then,

I+ J+ K =

∫−10

−100

(
x2 − x

x3 − 3x+ 1

)2(
1+

1

x2
+

1

(1− x)2

)
dx

=

∫−10

−100

(
1+ 1

x2 +
1

(1−x)2

)
(
x3−3x+1
x2−x

)2 dx

=

∫−10

−100

(
1+ 1

x2 +
1

(1−x)2

)
(
1+ x− 1

x
− 1

x−1

)2 dx

= −
x2 − x

x3 − 3x+ 1

∣∣∣−10

−100
,

which is obviously a rational number. (The actual value of the sum of the three

integrals is
11131110

107634259
).

Problem 10: 1984 – A5
Problem: Let R be the region consisting of all triples (x,y, z) of nonnegative

real numbers satisfying x+ y+ z ⩽ 1. Let w = 1− x− y− z. Express the value
of the triple integral

∫∫∫
R

x1y9z8w4 dx dy dz

in the form a!b!c!d!/n!, where a,b, c,d, and n are positive integers.
A neat approach from the official solutions is to generalize this problem. In-

deed, let Rt be the region consisting of all triples (x,y, z) of nonnegative real
numbers satisfying x+ y+ z ⩽ t. Define

I(t) =

∫∫∫
Rt

x1y9z8(t− x− y− z)4 dx dy dz.
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We perform a scaling of variables x = tu,y = tv, and z = tw. This yields

I(t) =

∫∫∫
Rt

(tu)(tv)9(tw)8(t− tu− tv− tw)4 tdu tdv tdw

=

∫∫∫
Rt

(tu)(tv)9(tw)8t4(1− u− v−w)4t3 du dv dw

= t25
∫∫∫
Rt

u1v9w8(1− u− v−w)4 du dv dw

= t25I(1).

Define, then

J =

∫∞
0

I(t)e−t dt =

∫∞
0

t25I(1)e−t dt = I(1)

∫∞
0

t25e−t dt = I(1)Γ(26) = I(1) · 25!.

However, it is also true that

J =

∫∞
0

∫∫∫
Rt

e−tx1y9z8(t− x− y− z)4 dx dy dz dt.

Perform the substitution s = t − x − y − z. This means that t = s + x + y + z.
Therefore,

J =

∫∞
0

∫∫∫
Rt

e−tx1y9z8(t− x− y− z)4 dx dy dz dt

=

∫∞
0

∫∞
0

∫∞
0

∫∞
0

e−se−xe−ye−zx1y9z8s4 dx dy dz ds

=

(∫∞
0

x1e−x dx

)(∫∞
0

y9e−y dy

)(∫∞
0

z8e−z dz

)(∫∞
0

s4e−s ds

)
= Γ(2)Γ(10)Γ(9)Γ(5)

= 1!9!8!4!.

Our problem actually needs us to find I(1). But

I(1) =
J

25!
=

1!9!8!4!

25!
.
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Problem 11: 1982 – A3
We are asked to evaluate the integral

I =

∫∞
0

arctan(πx) − arctan(x)

x
dx.

We try Feynman’s favorite method, parametrizing the integral and differenti-
ating under the integral sign. Accordingly, let

J(t) =

∫∞
0

arctan(tx) − arctan(x)

x
dx.

Then,

J ′(t) =

∫∞
0

∂

∂t

arctan(tx) − arctan(x)

x
dx

=

∫∞
0

dx

1+ t2x2

=
1

t2

∫∞
0

dx

x2 + 1
t2

=
arctan(tx)

t

∣∣∣∞
0

=
π

2t
.

Now, J(1) = 0. Therefore, integrating both sides between the limits 1 and t
yields

J(t) =
π

2

∫ t

1

dz

z
=

π

2
ln(t).

We then finish off by recognizing that I = J(π), and writing

I = J(π) =
π

2
ln(π) .
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