
Differential Evolution with Controlled

Annihilation and Regeneration of Individuals
and A Novel Mutation Scheme

Sudipto Mukherjee1, Sarthak Chatterjee1,
Debdipta Goswami1, and Swagatam Das2

1 Department of Electronics and Telecommunication Engineering
Jadavpur University, Kolkata, India

2 Electronics and Communication Sciences Unit
Indian Statistical Institute, Kolkata, India

Abstract. Differential Evolution is a stochastic, population-based opti-
mization algorithm, which grew out of the need to optimize real-parameter,
real-valued functions. The Differential Evolution variant that we propose
to describe in this paper modifies the mutation scheme of the variant
DE/best/1. We propose a three tier mutation scheme, to be suitably
carried out on selected sections of the population in question. Also, the
proposed variant tries to lessen the myriad troubles posed by stagnation,
which is a problem faced by all Differential Evolution algorithms. Our
comparative studies indicate that the proposed variant is able to com-
pete in a direction parallel to the state-of-the-art Differential Evolution
variants like JADE and jDE.

Keywords: optimization, Differential Evolution(DE), novel mutation
scheme, stagnation.

1 Introduction

Differential Evolution [6], [8]-[10] emerged in the late 1990s to serve the im-
mediate need of mathematicians, engineers and technicians to solve real-world
optimization problems. Over the years, cumulative research on differential evo-
lution and its sundry varieties has reached an impressive state. Modifications
have been proposed by introducing innovative mutation schemes, schemes that
better implement crossover, and tuning parameters like the scale factor, F and
the crossover ratio, Cr.

In this paper, we propose two new algorithmic components, which can be used
to improve results. They are given as follows:

1. The mutation scheme of DE/best/1 has been retained but a provision has
been made to change the mutation schemes for three different sections of the
population.

2. A sincere effort has been made to remove the problem of stagnation by
introducing the control parameter stagnate when there is no improvement of

B.K. Panigrahi et al. (Eds.): SEMCCO 2013, Part I, LNCS 8297, pp. 286–297, 2013.
c© Springer International Publishing Switzerland 2013

DE with Controlled Annihilation and Regeneration of Individuals 287

global best fitness value after mutation, crossover and selection for certain
successive generations. If this happens, we annihilate and regenerate the
stagnation-causing portion of the population.

The proposed DE variant is compared with DE/rand/1/bin, DE/current-to-
best/1/bin, SaDE, JADE, jDE and DEGL over 25 standard numerical bench-
mark functions taken from the CEC 2005 competition and special session on
real-parameter optimization.

The paper is organized as follows: Section II gives a general overview of the
DE family of algorithms. Section III explains the essential features of the pro-
posed DE variant. The experimental settings for the benchmarks and simulation
strategies are presented in section IV along with results that outline the perfor-
mance of the algorithm. Finally section V, presents a short discussion about the
probable applications of the algorithm in prospective areas.

2 Differential Evolution : A General Discussion

Differential Evolution is one method which is a member of a class of methods
called metaheuristics. It is an iterative scheme developed by Storn and Price in
1997 [8] which seeks to minimize an objective function by iteratively seeking a
parameter vector X∗ which minimizes the objective function f(X∗) (f : Ω ⊆
IRD −→ IR), that is f(X∗) < f(X) where X = [x1, x2, x3, . . . , xD]T , the pa-
rameter vector which characterizes the performance of a system, for all X ∈ Ω,
where Ω is a non-empty, large, finite set serving the purpose for the domain of
the search.

2.1 Initialization of the Vectors Controlling the Performance of the
System

Differential Evolution searches for a global optimum in a search space IRD com-
prising of D dimensions. The first step is to initialize a population of NP , D
dimensional, real-valued parameter vectors, where NP is the population size for
the optimization problem at hand. We call each such vector a genome or chromo-
some. In analogy with biological processes, the genomes will modify their values
over generations which may be denoted by G = 0, 1, 2, . . . , Gmax. The ith vector
of the population for the current generation may be represented by

Xi,G = [x1,i,G, x2,i,G, x3,i,G, . . . , xD,i,G].

The initialization of the population at G = 0 must be done taking care of
the bounds which restrict the parameter vector X. As such, the minimum and
maximum values for X are given by

Xmin = [x1,min, x2,min, x3,min, . . . , xD,min],

Xmax = [x1,max, x2,max, x3,max, . . . , xD,max].

288 S. Mukherjee et al.

The initialization of the jth component of the ith vector is done as follows

xj,i,0 = xj,min + randi,j [0, 1] (xj,max − xj,min),

where randi,j [0, 1] is a uniformly distributed random number lying between 0 and
1 (0 ≤ randi,j [0, 1] ≤ 1) and is instantiated independently for each component
of the ith vector. This is done so as to ensure that the population initialized at
G = 0 covers, as far as possible, the range of values that can possibly be taken
by X.

2.2 Mutation with Difference Vectors

Once the initialization has been done, the objective of the algorithm is to create a
donor vector V i,G corresponding to each member of the population (rechristened
as the target vector, Xi,G) in the current generation through a process called
mutation. The five most commonly used mutation schemes are as follows:

1. DE/rand/1

V i,G = Xri1,G
+ F (Xri2,G

−Xri3,G
)

2. DE/best/1

V i,G = Xbest,G + F (Xri1,G
−Xri2,G

)

3. DE/current-to-best/1

V i,G = Xi,G + F (Xbest,G −Xi,G) + F (Xri1,G
−Xri2,G

)

4. DE/best/2

V i,G = Xi,G + F (Xri1,G
−Xri2,G

) + F (Xri3,G
−Xri4,G

)

5. DE/rand/2

V i,G = Xri1,G
+ F (Xri2,G

−Xri3,G
) + F (Xri4,G

−Xri5,G
)

The indices ri1, r
i
2, r

i
3, r

i
4 and ri5 are mutually exclusive random integers chosen

from the closed interval [1, NP] and all of them should be different from i. These
indices are randomly generated anew for each donor vector. The scale factor F
is a positive control parameter for scaling the difference vectors. Xbest,G is the
best individual vector with the best fitness (i.e. corresponding to a particular
minimization problem, Xbest,G has the lowest objective function value).

DE with Controlled Annihilation and Regeneration of Individuals 289

2.3 The Crossover Scheme

Crossover involves themixing of components between the donor vector and the tar-
get vector Xi,G to form the trial vector U i,G = [u1,i,G, u2,i,G, u3,i,G, . . . , uD,i,G].
The DE family of algorithms essentially uses two kinds of crossover: exponential
(or two-point-modulo) and binomial (or uniform).We discuss the latter as the pro-
posed DE variant uses it. The binomial crossover scheme may defined as follows:

uj,i,G =

{
vj,i,G, randi,j [0, 1] ≤ Cr, orj = jrand,
xj,i,G, otherwise.

where, as explained in the previous section randi,j [0, 1] is a uniformly distributed
random number created afresh for each jth component of the ith parameter
vector. jrand is a randomly chosen integer lying in the interval [1, D] which
ensures that U i,G gets at least one component from V i,G. It is instantiated once
for each vector for each generation. See [4] for a DE algorithm containing novel
mutation and crossover strategies.

2.4 The Selection Scheme

Selection is the process that ascertains whether the target or the trial vector
survives to the next generation which is denoted by G = G + 1. The selection
operation may be described as follows:

Xi,G+1 =

{
U i,G, f(U i,G) ≤ f(Xi,G),
Xi,G, f(U i,G) > f(Xi,G).

where f(X) is the given objective function to be minimized.

3 Algorithm of the Proposed Differential Evolution
Variant

In this section, we slowly begin to develop the main aspects of the proposed DE
variant. We start with defining the main parameters used. The scale factor, F
has been given a value of 0.8, and the crossover rate, Cr has been given the
value of 0.9, the latter value having been found suitable for a wide variety of
optimization problems that can be successfully tackled by Differential Evolution.
Parameter-selection in DE is addressed in [5]. The algorithm has been tested on
a population NP of 100 individuals with the number of dimensions D being
variable and set at 30, 50 and 100 respectively.

3.1 Development of a Novel Mutation Scheme that Closely Mimics
Behavior Seen in the Natural World

Mutation Type I : Mutation between the Best and the Worst. The
proposed DE variant uses a mutation scheme that is a slight departure from

290 S. Mukherjee et al.

the mutation scheme defined earlier by DE/best/1. The scheme in question is
defined by

V i,G = Xbest,G + F (Xri1,G
−Xri2,G

)

where ri1 and ri2 are mutually exclusive random integers chosen in such a way
that the maximum improvement in the present generation is given utmost im-
portance. This is done by ensuring that ri1 is chosen from the best p% and ri2
from the worst p% of the population. As explained earlier, the population con-
sists of 100 individuals, and here we have chosen p = 20. The novelty of this
approach is clearly seen if we consider the equation defined above. A close look
at the term in parenthesis suggests the formation of the vector (Xri1,G

−Xri2,G
),

which indicates that this vector is nothing but one that provides the direction
that is approximately the direction of maximum improvement, since ri1 and ri2
are chosen from the best and worst p% of the population respectively.

Mutation Type II : Mutation between Two Individuals of the Best
p% of the Population Apart from the above, the proposed DE variant also
considers the possibility of a mutation between two randomly selected members
of the best p% of the population. The proposed advantage of this type of muta-
tion is to overcome the overtly exploratory nature of the mutation type I and to
make it a bit more exploitative. Since, in the present mutation type, the muta-
tion is being performed taking into consideration Xri1,G

and Xri2,G
, which are

randomly selected vectors taken from the best p% of the population, it can be
expected that the two aforementioned vectors do not differ by a great deal with
respect to their fitness values. The mutation type II has the cumulative effect
of directing the donor vector towards the historically best vector which has the
best fitness value Xbest,G. Hence, we find that this type of mutation maintains
the best members of the present generation and progressively directs them more
and more towards Xbest,G. Therefore, this mutation type localizes the search
region of the proposed DE variant around the region of the vector Xbest,G.

Mutation Type III : Average Case Mutation The average case mutation
type is included to maintain diversity and also the general degree of randomness
that characterizes a metaheuristic. This third mutation type seeks to mutate any
two randomly selected vectors of the population excluding the best p% of the
population, since this case has already been considered in the first mutation type.
At this juncture, it becomes an immediate necessity to differentiate between the
mutation type III and the earlier described mutation types I and II.

As compared to the exploratory nature of the mutation type I and the ex-
ploitative nature of the mutation type II, the mutation type III is neither ex-
ploratory nor exploitative. Mutating between two random individuals of the
best p% of the population ensures that the search is confined to contours around
Xbest,G, and mutating between two random individuals of the best and worst
p% of the population ensures that the search space is generously explored.

The overall mutation scheme, which is a combination of the types, I, II and
III is carried out in the following manner: For a number of individuals equal to

DE with Controlled Annihilation and Regeneration of Individuals 291

2p% of the population we carry out the mutation type I, that is, a mutation
between the best and worst p% of the population. For a number equal to p% of
the population, the mutation type II is chosen, namely a mutation between any
two members of the best p% of the population. For the remaining percentage of
the population, we carry out the mutation type III, the average case mutation
type elucidated earlier.

The mutation scheme is successfully executed by taking into consideration the
term Sorted Population which contains the individuals of the present generation
but in a sorted order. The sorting is done in such a manner that the individual
with the best fitness value is placed first and the individual with the worst
fitness value is placed last. In other words, Sorted Population contains all the
individuals of the present generation, sorted according to their fitness values, the
fittest being given priority.

3.2 Crossover

The proposed DE variant uses a novel crossover scheme. This elite crossover
operation incorporates in its working a greedy parent-selection strategy. For
each donor vector V i,G, a vector is randomly selected from the best p% vectors
of the present population and then binomial crossover is performed between the
donor vector and the randomly chosen vector in order to generate the trial vector
U i,G.

3.3 Stagnation, Its Connotations and an Attempted Removal

Stagnation refers to the trapping of the population near local extrema that
causes major problems by preventing the population from progressing towards
the much coveted global extrema.

The stagnation in the proposed DE variant is detected by the control param-
eter stagnate. When the fitness of the population does not improve even after
mutation and crossover for several generations, there arises the need for annihi-
lation and regeneration of the so-called “bad” part of the population. The rule
that has been followed for annihilation and regeneration is as follows: Here the
worst p

2% of the population is annihilated and the same number of chromosomes
is regenerated using a regeneration rule. The parameter stagnate is chosen such
that:

1. The stagnation is detected properly.
2. The population with regenerated chromosomes gets sufficient opportunity to

overcome the stagnation by improving their fitness values.

The annihilation and regeneration rule can be presented as follows: To gener-
ate a new population, each chromosome is generated according to the following
rule: For every dimension j, where j = 1, 2, 3, . . . , n, a random number rndj
uniformly distributed within (0, 1) is generated and compared with a parameter
pro ∈ (0, 1). If rndj ≤ pro, then New Chromosomej is set to a randomly gener-
ated real number uniformly distributed in the legal range [Lj, Uj], where Lj and

292 S. Mukherjee et al.

Uj are the lower and upper bounds respectively of the dimension j. Otherwise,
New Chromosomej is inherited from any member selected randomly from the
best p

2% of the population, that is to say,

New Chromosomej =

{
rand(Lj, Uj), rndj ≤ pro,
Sorted Populationj

ran, otherwise.

where Sorted Population is the sorted array containing the present population
and New Chromosome has each member of the newly generated sub-population
(which is of the same size as the p

2% of the population to be annihilated). Here,
ran is a random positive integer less than the ceiling of p

2% of the population.
Now, after generation of the desired number of chromosomes, this sub-population
is injected into the present population replacing the worst p

2% of its members.

The parameter pro is kept equal to D
NP where D is the dimensionality of the

optimization problem at hand and NP is the number of individuals in the pop-
ulation. This newly generated sub-population possesses some desirable features
of the present population as some of its components are chosen from the best
vectors of the present population.

For unimodal functions, stagnation rarely occurs; so the stagnate parameter
would be ideally quite high for such functions. However, for multimodal and
hybrid functions with noise, stagnation occurs pretty frequently and choosing
stagnate to be at a lesser value will lead to better results. Experiments with a
wide range of problems suggest that stagnate = D

2 seems to be a suitable choice
for black-box optimization problems.

4 Experiments and Results

4.1 Numerical Benchmarks

The proposed algorithm (abbreviated as CAR DE from now on) is tested using
a set of standard benchmark functions from the special session and competition
on real parameter optimization held under the IEEE CEC 2005. These func-
tions include a diverse set of features like multimodality, ruggedness, noise in
fitness, ill-conditioning, rotation etc. and based on the classical benchmarks like
Rosenbrock’s, Rastrigin’s, Griewank’s, Schwefel’s and Ackley’s functions. A de-
tailed description of these functions appears in [11] and is not repeated here. In
summary, functions 1 to 5 are unimodal, functions 6 to 14 are multimodal and
functions 15 to 25 are hybrid functions.

4.2 Algorithms Compared and Parametric Setup

The performance of CAR DE is compared with the following algorithms that
include two classical DE variants and four state-of-the-art adaptive DE variants:

1. DE/current-to-best/1/bin with F = 0.8 and Cr = 0.9;
2. DE/rand/1/bin with F = 0.8 and Cr = 0.9;

DE with Controlled Annihilation and Regeneration of Individuals 293

Table 1. Mean and Standard Deviation of the Error Values for F1 to F10(50D). The
Best Entries are Marked in Boldface.

Functions → f1 f2 f3 f4 f5
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
9.6015e − 05 3.960e + 13 5.469e+ 7 1.180e + 4 8.709e+ 03
(1.2837e − 05) (9.307e + 02) (1.328e+ 07) (3.332e + 03) (6.938e+ 02)

DE/current-to-best/bin
2.1443e − 06 2.136e + 03 1.030e+ 07 8.5675e + 03 7.462e+ 03
(6.1254e − 06) (1.128e + 03) (6.375e+ 06) (2.8624e + 03) (1.326e+ 03)

JADE
7.4615e − 14 5.6310e − 04 8.7156e+04 3.160e + 03 3.055e+ 03
(2.4190e − 04) (7.8233e − 06) (3.6847e+04) (4.134e − 01) (5.485e+ 02)

jDE
3.1544e − 09 5.202e + 03 2.977e+ 07 1.0194e + 04 4.206e+ 03
(4.9946e − 09) (1.486e + 03) (5.744e+ 06) (2.1828e − 01) (5.088e+ 02)

SaDE
1.4872e − 11 2.280e − 03 7.179e+ 05 9.778e + 04 5.992e+ 03
(2.8335e − 12) (8.545e − 03) (1.007e+ 06) (9.835e + 01) (4.464e+ 02)

DEGL
2.3462e − 20 1.1757e − 07 2.3114e+ 05 1.5746e + 03 5.0692e+ 02
(5.6234e − 20) (6.5592e − 08) (1.032e+ 05) (9.501e + 00) (5.803e+ 02)

CAR DE
5.8927e-36 5.1189e-13 8.5215e+ 04 1.5795e-02 4.0927e+02
(0.0000e+00) (1.4956e-14) (1.6874e+ 04) (2.2227e-02) (1.6839e+02)

Functions → f6 f7 f8 f9 f10
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
4.9162e + 01 6.1953e + 03 2.1142e+ 01 3.468e + 02 3.763e+ 02
(1.182e+ 01) (4.594e − 12) (3.330e− 02) (1.199e + 01) (1.578e+ 01)

DE/current-to-best/bin
1.0782e + 07 6.6691e + 03 2.1133e+ 01 2.406e + 02 2.5467e+ 02
(1.237e+ 07) (1.795e + 02) (3.251e− 02) (2.939e + 01) (7.6634e+ 01)

JADE
1.5413e + 01 6.1932e + 03 2.1136e+ 01 1.352e+02 1.935e+ 02
(1.0642e + 01) (1.840e + 00) (3.251e− 02) (2.591e+00) (2.060e+ 01)

jDE
4.1758e + 01 6.3114e + 03 2.1132e+ 01 1.716e + 02 1.9597e+ 02
(8.910e+ 00) (1.596e + 01) (3.807e− 02) (1.409e + 01) (5.6236e+ 01)

SaDE
1.1337e + 01 6.1951e + 03 2.1132e+ 01 1.148e + 02 6.342e+01
(1.044e+ 01) (4.594e − 12) (3.458e− 02) (1.266e + 01) (1.287e+01)

DEGL
1.3452e + 01 6.1953e + 03 2.1131e+ 01 1.620e + 02 1.0217e+ 02
(1.108e+ 01) (4.594e − 12) (3.917e− 02) (1.743e + 01) (3.5590e+ 01)

CAR DE
1.0653e+01 1.1084e-12 2.1131e+01 1.5422e + 02 1.7213e+ 02
(3.9319e+00) (4.0164e-14) (2.0287e-02) (2.1849e + 01) (4.3521e+ 01)

3. JADE with c = 0.1, p = 0.05, and optional external archive [12];
4. jDE with Fl = 0.1, Fu = 0.9, and τ1 = τ2 = 0.1 [1];
5. SaDE [7];
6. DEGL/SAW [3] with α = β = F = 0.8, Cr = 0.9, and neighborhood

size=0.1 ∗NP .

The population size NP of all the DE variants is kept at 100 irrespective of the
dimension D.

4.3 Simulation Strategies

Functions f1 to f25 are tested for 50 and 100 dimensions. The maximum number
of FEs are set to 500000 for 50D problems and 1000000 for 100D problems as
per the guidelines of the CEC 2005 special session [11]. All the simulations have
been done on an Intel Core-i5 CPU machine with 4 GB memory and 2.5 GHz
speed.

4.4 Results on the Numerical Benchmarks

Tables 1, 2, 3 and 4 show the mean and standard deviation of the 50 best-
of-the-run-errors for 50 independent runs of each of the seven algorithms on

294 S. Mukherjee et al.

Table 2. Mean and Standard Deviation of the Error Values for F11 to F25(50D). The
Best Entries are Marked in Boldface.

Functions → f11 f12 f13 f14 f15
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
7.264e+ 01 2.049e + 06 3.596e+ 01 2.339e + 01 5.090e+ 02
(1.212e+ 00) (5.925e + 05) (1.446e+ 00) (1.486e − 01) (7.981e+ 01)

DE/current-to-best/bin
4.950e+ 01 2.505e + 05 3.412e+ 01 2.286e + 01 4.989e+ 02
(4.4551e + 00) (1.137e + 05) (8.9042e+ 00) (4.091e − 01) (5.001e+ 01)

JADE
6.208e+ 01 1.768e + 05 2.3112e+ 01 2.284e + 01 3.769e+ 02
(1.744e+ 00) (7.105e + 04) (4.784e− 01) (2.5486e − 01) (8.764e+ 01)

jDE
7.330e+ 01 1.473e + 05 2.5603e+ 01 2.309e + 01 4.000e+ 02
(1.008e+ 00) (1.928e + 05) (1.322e+ 00) (2.8437e − 01) (0.000e+ 00)

SaDE
6.634e+ 01 8.871e+03 2.771e+ 01 2.284e + 01 3.8827e+ 01
(1.485e+ 00) (7.092e+03) (4.112e+ 00) (2.0634e − 01) (1.0755e+ 02)

DEGL
6.290e+ 01 5.781e + 04 3.063e+ 01 2.262e + 01 3.8982e+ 02
(1.1360e + 01) (4.566e + 04) (4.361e+ 00) (3.3750e − 01) (4.9284e+ 01)

CAR DE
4.1575e+01 1.4989e + 06 1.4648e+01 2.1956e+01 3.6446e+02
(1.4847e+00) (2.8857e + 05) (4.0440e+00) (1.0006e+00) (1.2395e+01)

Functions → f16 f17 f18 f19 f20
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
2.7343e + 02 3.7286e + 02 9.9043e+ 02 9.4100e + 02 9.8536e+ 02
(1.0498e + 01) (3.1287e + 01) (4.8709e+ 01) (3.8003e + 01) (4.4956e+ 01)

DE/current-to-best/bin
2.5387e + 02 2.5234e + 02 9.2089e+ 02 9.2667e + 02 9.3586e+ 02
(1.4757e + 01) (5.7296e + 01) (5.6632e+ 01) (5.9865e + 01) (5.3925e+ 01)

JADE
1.437e+ 02 1.896e + 02 9.206e+ 02 9.6031e + 02 9.8672e+ 02
(5.2267e + 01) (3.8745e + 01) (1.893e+ 00) (2.5236e + 01) (1.8675e+ 02)

jDE
2.716e+ 02 3.059e + 02 9.145e+ 02 9.2090e + 02 9.9121e+ 02
(4.7190e + 00) (1.163e + 01) (3.163e+ 01) (1.0406e + 01) (1.5365e+ 01)

SaDE
1.5420e + 01 1.934e + 02 9.041e+ 02 9.3493e + 02 9.3167e+ 02
(6.1686e + 01) (2.9679e + 00) (5.208e+ 01) (1.9639e + 01) (2.0137e+ 01)

DEGL
1.3153e + 02 1.7659e + 02 9.6067e+ 02 9.1430e + 02 9.2196e+ 02
(1.9986e + 01) (2.3653e + 01) (2.8458e+ 01) (2.0105e + 01) (4.5874e+ 01)

CAR DE
1.2552e+02 1.2393e+02 8.4017e+02 8.4094e+02 8.3885e+02
(1.2970e+00) (1.3762e+00) (1.0514e+00) (3.1157e+00) (1.8098e+00)

Functions → f21 f22 f23 f24 f25
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
9.1108e + 02 9.9463e + 02 9.1185e+ 02 7.9849e + 02 1.7586e+ 03
(5.7474e + 02) (1.3465e + 01) (2.5986e+ 01) (2.4586e + 01) (4.5365e+ 00)

DE/current-to-best/bin
8.9465e + 02 9.3443e + 02 9.2645e+ 02 7.9456e + 02 1.7846e+ 03
(1.7465e + 02) (1.1026e + 01) (2.5986e+ 02) (1.3642e + 01) (6.7654e+ 00)

JADE
8.523e+ 02 9.1370e + 02 8.103e+ 02 2.000e + 02 1.6632e+ 03
(3.5175e + 02) (2.4356e + 01) (2.4572e+ 02) (0) (5.5842e+ 00)

jDE
8.0619e + 02 9.796e + 02 8.3044e+ 02 2.000e + 02 1.728e+ 03
(1.0896e + 02) (1.4851e + 01) (1.0787e+ 02) (0) (6.2562e+ 00)

SaDE
8.6400e + 02 9.7245e + 02 8.6405e+ 02 2.000e + 02 1.7586e+ 03
(1.5799e + 02) (3.3383e + 01) (1.5266e+ 02) (0) (3.1453e+ 00)

DEGL
8.3600e + 02 9.4242e + 02 8.3934e+ 02 7.2465e + 02 1.571e+ 03
(2.1772e + 02) (3.5647e + 01) (1.6620e+ 02) (8.3066e + 01) (6.5096e+ 00)

CAR DE
7.3459e+02 5.001e+02 7.0374e+02 2.000e+02 2.3126e+02
(8.9992e+00) (8.2260e+00) (7.8156e+01) (0) (6.4983e+00)

25 numerical benchmarks for 50D and on the first 14 benchmarks for 100D
respectively. Note that the best-of-the-run error corresponds to the absolute
difference between the best-of-the-run value f(Xbest) and the actual optimum
f∗ of a particular objective function, i.e., |f(Xbest) − f∗|. Table 1 and 2 reveal
that CAR DE outperformed the other DE variants in 21 out of 25 functions for
50D problems and performs well specially for multimodal and hybrid functions.
Tables 3 and 4 show that this algorithm defeats the other DE variants in 11
out of 14 functions for 100D problems. Thus the increasing dimensionality does
not worsen the performance of this algorithm. Note that CAR DE retains its

DE with Controlled Annihilation and Regeneration of Individuals 295

Table 3. Mean and Standard Deviation of the Error Values For F1 To F10(100D). The
Best Entries are Marked in Boldface.

Functions → f1 f2 f3 f4 f5
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
2.9467e − 05 8.9371e + 04 9.7635e+ 07 3.0937e + 05 1.0675e+ 06
(3.0947e − 04) (7.4925e + 04) (8.4625e+ 03) (4.9875e + 03) (4.8437e+ 03)

DE/current-to-best/bin
8.4735e − 06 9.0927e + 03 9.8525e+ 06 7.5821e + 04 5.0967e+ 05
(9.4927e − 05) (8.4736e − 05) (5.0948e+ 03) (8.6745e + 03) (5.8453e+ 03)

JADE
6.4825e − 10 3.4923e + 03 2.9371e+06 5.0342e+04 7.5251e+ 05
(4.0249e − 09) (8.4725e − 06) (7.4728e+04) (6.9785e-03) (3.9464e+ 03)

jDE
7.4627e − 07 5.9371e + 03 8.9372e+ 06 7.9261e + 04 2.9361e+ 05
(3.9371e − 09) (8.4625e − 07) (3.0927e+ 04) (2.7456e + 03) (6.4536e+ 03)

SaDE
8.2615e − 08 2.9471e + 04 7.9171e+ 06 6.0283e + 04 9.7364e+ 05
(5.0445e − 09) (7.7352e − 03) (8.0936e+ 02) (6.9573e + 03) (2.0936e+ 03)

DEGL
9.6844e − 07 8.9261e + 04 4.8326e+ 07 1.9372e + 05 9.0936e+ 05
(4.0937e − 08) (8.4563e − 06) (5.0945e+ 04) (4.9463e + 04) (6.9382e+ 03)

CAR DE
9.099e-13 1.5207e+01 4.5832e+ 06 9.7403e + 04 1.7284e+04
(7.1901e-14) (2.8769e+01) (2.9612e+ 04) (2.6157e + 04) (2.7346e+03)

Functions → f6 f7 f8 f9 f10
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
1.8946e + 05 1.8574e + 05 2.2497e+ 01 9.3752e + 02 9.7631e+ 02
(4.9372e + 01) (4.0832e + 02) (3.0423e+ 01) (6.7322e + 01) (1.5787e+ 01)

DE/current-to-best/bin
9.3967e + 04 1.6738e + 05 2.2308e+ 01 9.4065e + 02 7.5467e+ 02
(7.4925e + 01) (8.4735e + 02) (8.4725e+ 00) (7.6695e + 01) (5.64334e+01)

JADE
7.5329e + 04 9.0417e + 04 2.1964e+ 01 8.9272e + 02 5.935e+ 02
(7.3725e + 01) (8.4735e + 02) (9.4673e+ 01) (4.5043e + 01) (8.8760e+ 01)

jDE
8.1876e + 04 1.1625e + 05 2.2197e+ 01 9.3264e + 02 6.9597e+ 02
(8.4752e + 00) (7.4637e + 02) (7.4627e+ 00) (7.3645e + 01) (7.7653e+ 01)

SaDE
2.0172e + 04 9.8463e + 04 2.2075e+ 01 9.2737e + 02 8.3426e+ 02
(8.2514e + 01) (8.4623e + 02) (9.3736e+ 00) (5.1369e + 01) (1.6378e+ 01)

DEGL
4.2684e + 04 1.2383e + 05 2.2210e+ 01 9.5591e + 03 8.2017e+ 02
(5.8352e + 01) (9.4573e + 02) (4.8252e+ 00) (3.9274e + 01) (3.5590e+ 01)

CAR DE
1.8396e+02 1.8914e+04 2.1674e+01 5.9232e+02 4.9012e+02
(9.8705e+01) (1.5657e+03) (3.0845e+01) (2.2333e+01) (8.4560e+01)

Table 4. Mean and Standard Deviation of the Error Values for F11 to F14(100D). The
Best Entries are Marked in Boldface.

Functions → f11 f12 f13 f14
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
9.2648e + 01 9.049e + 06 5.2926e+ 01 4.4339e + 01
(1.9212e + 00) (7.925e + 05) (4.346e+ 00) (1.4836e − 01)

DE/current-to-best/bin
6.9150e + 01 6.505e + 05 4.4132e+ 01 4.5186e + 01
(6.6451e + 00) (4.137e + 05) (3.5042e+ 00) (4.4091e − 01)

JADE
9.1208e + 01 6.768e + 05 3.4141e+ 01 4.2684e + 01
(4.7744e + 00) (2.105e + 04) (4.0834e+ 00) (3.8163e − 01)

jDE
7.7630e + 01 7.473e + 05 3.8650e+ 01 4.3309e + 01
(9.4008e + 00) (7.928e + 05) (4.322e+ 01) (2.7163e − 01)

SaDE
8.4684e + 01 9.0781e+04 3.5713e+ 00 4.2874e + 01
(3.485e+ 00) (5.9092e+03) (5.112e+ 00) (2.5343e − 01)

DEGL
8.1290e + 01 8.8781e + 05 4.063e+ 01 4.2662e + 01
(1.360e+ 01) (7.1566e + 04) (2.361e+ 01) (6.9834e − 01)

CAR DE
6.2910e+01 4.4677e + 05 3.3179e+01 4.0225e+01
(4.1313e+00) (1.8670e + 04) (4.9355e+00) (2.4122e-01)

superiority in case of rotated, shifted functions and functions with noise in fitness.
Therefore, function rotation and incorporation of multiplicative noise does not
hamper the performance of the algorithm significantly.

296 S. Mukherjee et al.

Fig. 1. Progress toward the optimum solution for median run of eight algorithms over
two numerical benchmarks (in 50D).
Left: Shifted rotated Griewank’s function f7; Right: Shifted Rotated Weierstrass func-
tion f11.

Fig. 2. Progress toward the optimum solution for median run of eight algorithms over
two numerical benchmarks (in 50D).
Left: Rotated Hybrid Composition Function f21; Right: Composition function f25.

For further illustration, in Fig. 1 and 2, we show the convergence graphs for
the median run of (where the runs were sorted according to the final best error
values achieved in each) the CAR DE algorithm on four benchmarks in 50D.

5 Conclusion

The results for 50 dimensions reveal the performance of CAR DE to be almost
comparable to that of JADE (and SADE in some instances) for all the unimodal
functions, however the performance of CAR DE is slightly better for multimodal
functions, and significantly better for hybrid functions. In all the hybrid functions,
CAR DEperforms better than all the state-of-the-artDE variants. The results ob-
tained for higher dimensions support the superiority of CAR DEover the otherDE
variants. Specially, the hybrid functions of 50 dimensions andmultimodal functions
of 100dimensions lucidlydemonstratehowthenovelmutation schemecoupledwith
annihilation and regeneration can improve the efficiency of DE.

The real challenge to an evolutionary algorithm comes in the form of optimiza-
tion of highly complex, noisy and higher dimensional functions (such as those
working in 50 or 100 dimensions). As the complexity of the function increases,
there arrives the need to efficiently explore the search space.

The present algorithm tries to optimize such more complex functions, attain-
ing that purpose without losing much of its explorative nature for functions

DE with Controlled Annihilation and Regeneration of Individuals 297

of smaller dimensions. Further improvements to the CAR DE algorithm may
be made by tuning the algorithmic parameters and maintaining an adaptive
external archive.

References

1. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control
parameters in differential evolution: A comparative study on numerical benchmark
problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

2. Das, S., Suganthan, P.N.: Differential Evolution A survey of the state-of-the-art.
IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

3. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a
neighbourhood based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–
553 (2009)

4. Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An Adaptive Differential
Evolution Algorithm With Novel Mutation and Crossover Strategies for Global
Numerical Optimization. IEEE Trans. on Systems, Man, and Cybernetics, Part B:
Cybernetics 42(2), 482–500 (2012)

5. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolu-
tion algorithm with ensemble of parameters and mutation strategies. Applied Soft
Computing 11(2), 1679–1696 (2011)

6. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution A practical Approach
to Global Optimization. Springer, Berlin (2005)

7. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential Evolution Algorithm with
strategy adaptation for global numerical optimization. IEEE Trans. Evol. Com-
put. 13(2), 398–417 (2009)

8. Storn, R., Price, K.V.: Differential Evolution A simple and efficient heuristic for
global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

9. Storn, R., Price, K.V.: Differential Evolution A simple and efficient adaptive scheme
for global optimization over continuous spaces, ICSI, Berkeley, CA. Tech. Rep. TR-
95-012

10. Storn, R., Price, K.V.: Minimizing the real functions of the ICEC 1996 contest by
differential evolution. In: Proc. IEEE Int. Conf. Evol. Comput., Nagoya, Japan,
pp. 842–844 (1996)

11. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari,
S.: Problem definitions and evaluation criteria for the CEC 2005 special session on
real-parameter optimization. Nanyang Technol. Univ., Singapore (2005)

12. Zhang, J., Sanderson, A.C.: JADE: Adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

	Differential Evolution with ControlledAnnihilation and Regeneration of Individualsand A Novel Mutation Scheme
	1 Introduction
	2 Differential Evolution : A General Discussion
	2.1 Initialization of the Vectors Controlling the Performance of the
	2.2 Mutation with Difference Vectors
	2.3 The Crossover Scheme
	2.4 The Selection Scheme

	3 Algorithm of the Proposed Differential Evolution Variant
	3.1 Development of a Novel Mutation Scheme that Closely Mimics
	3.2 Crossover
	3.3 Stagnation, Its Connotations and an Attempted Removal

	4 Experiments and Results
	4.1 Numerical Benchmarks
	4.2 Algorithms Compared and Parametric Setup
	4.3 Simulation Strategies
	4.4 Results on the Numerical Benchmarks

	5 Conclusion
	References

