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a b s t r a c t

This paper presents a novel swarm dynamics and illustrates its applications in automated multi-agent
systems. The motion of the particles of the swarm in a particular landscape is governed by an attractant–
repellent profile, which has an intimate linkage with the distance separating the particles. Following
standard stability and chaos analysis procedures, it is demonstrated that the dynamics indeed simulates
a swarm. We adopt a Lyapunov-function based stability and chaos analysis procedure to this effect. The
parameterized conditions for which the dynamics exhibits chaotic characteristics are also investigated.
Finally, the swarming dynamics is applied to a practical problem, thus elucidating how the proposition
can be of use in a real-life situation. Since the dynamics rests on the values of certain parameters, we can
control the areas in which we want to use the dynamics by controlling these parameters. The proposed
dynamics will be shown to produce convergent, limit cyclic and chaotic behavior. This swarming
dynamics can therefore be put to myriad uses depending on the application that is required.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Swarm behavior, or swarming, can be loosely defined as the
collective intelligence exhibited by living or non-living entities, the
prime characteristic of which is the en masse migration of the
individuals in question towards a particular direction. Numerous
biological systems exhibit swarming behavior, the most pivotal of
them being that exhibited by birds, insects and fish. When applied
to inanimate entities, the term may be applied to the control of
automated systems of multiple robots (Buhl et al., 2006; Egerstedt
and Hu, 2001), programmed vehicles on sea, air or land (Fax and
Murray, 2004; Gil et al., 2008a), mechanized tracking (Gil et al.,
2008b), rendezvous (Dimarogonas and Kyriakopoulos, 2007),
coverage supervision on mobile sensing networks (Cortes et al.,
2004), and so on.

The inherently biological phenomenon of swarming (Breder,
1954; Warburton and Lazarus, 1991; Okubo, 1986; Grünbaum and
Okubo, 1994; Mogilner and Edelstein-Keshet, 1999; Durrett and
Levin, 1994; Gueron and Levin, 1995) has greatly intrigued physi-
cists (Levine and Rappel, 2001; Vicsek et al., 1995; Czirok et al.,
1996, 1997; Czirok and Vicsek, 2000; Shimoyama et al., 1996) and

mathematicians alike. Computer scientists have also latched onto
these patterns by working out efficient optimization algorithms
that mimic the real-time behavior of biological swarms. Out of
these efforts, algorithms like the ant colony optimization (ACO)
algorithm (Bonabeau et al., 1999), the particle swarm optimization
(PSO) algorithm (Kennedy et al., 2001; Clerc and Kennedy, 2002)
and the bacterial foraging optimization algorithm (BFOA) (Passino,
2002) have evolved.

Since the present work bases itself on the behavior of swarms, a
brief review of the various sources and characteristics of swarming
behavior present in the currently published literature would not
be inappropriate. Extensive amounts of research have been carried
out in the field of swarm dynamics, and this has opened up several
new and interesting avenues in the aforementioned discipline.

Gazi and Passino (2004) considered an M-individual swarm in
an n-dimensional Euclidean space and then modeled the behavior
of the constituent particles of the swarm based on the nature of an
attractant–repellent profile, or the “s�profile”, as it was referred
to by them. Liu and Passino (2004) improved the social foraging
swarm profile by modifying it to suit the presence of sensor errors,
and even the presence of a considerable amount of various types
of noise on the profile, all the while maintaining the robust and
cohesive nature for which the profile is known. Leonard and
Fiorelli (2001) added support to the above claims by showing
allied results based on artificial potentials and virtual leaders for
agents with point-mass dynamics. Li (2008) carried out a rigorous
study on the stability characteristics of a swarm with general
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directed and weighted topology. Liu et al. (2003) derived condi-
tions for one-dimensional asynchronous swarms to achieve
collision-free convergence even in the presence of sensing delays
and asynchronism. For the members of a swarm to behave in a
manner that justifies the use of the swarming dynamics to solve
real-life practical problems, collision avoidance is a critical issue.
For example, it is practically useless to propose a dynamics, the
constituent particles of which agglomerate after a few iterations.
Agglomeration is a very potent issue to be considered, especially
when the simplifying assumption of the particles being point
masses is not rigorously maintained. Finite particle size does tend
to cause problems, the solutions of which are clearly addressed by
Liu et al.

Chaos is formally defined as aperiodic long-term behavior in a
deterministic system that exhibits sensitive dependence on initial
conditions (Strogatz, 1994). The term deterministic means that the
system has no random or noisy inputs or parameters. The irregular
behavior arises from the system's nonlinearity, rather than from
the noisy driving forces. The systematic mathematical study of
chaotic systems has hugely developed during the second part of
the 20th century (Chen and Dong, 1998; Andrievskii and Fradkov,
2004). Frank et al. (1990) conducted an extensive study of neural
network systems, the complex interconnections which help
human beings to think. A time-series analysis of chaotic behavior
has revealed an intimate linkage of chaos with epileptic seizures.
Chen (1988) showed proof of evidence of the presence of low-
dimensional strange attractors in several empirical monetary
ensembles. Monetary growth is described by a continuous-time
deterministic model with delayed feedback. Phase transitions from
periodic to chaotic motion are shown.

Chaos analysis in artificial neural networks (ANNs) has occu-
pied significant amounts of space in academia in recent years.
Along the lines of Das et al. (2012), we propose a brief survey of
the latter. Chen and Aihara (1995) proposed a transiently chaotic
neural network (TCNN) as an approximate method for solving
combinatorial optimization problems. A transiently chaotic
dynamics has been introduced into the neural network. Unlike
conventional neural networks with point attractors only, the
proposed neural network has richer and more flexible dynamics,
so that it can be expected to have higher ability of searching for
globally optimal or near-optimal solutions. Nozawa (1992) intro-
duced a neural network model as a globally coupled map.
Nozawa's model takes a cue from the network model of Hopfield,
possessing a negative self-feedback connection. This model
analyzes information in terms of the multitude of maps acting
on the constituent nodes of the network, and gives a novel way by
which information may be processed. The model is tested on
information search using abstruse keywords and the classic
traveling salesman problem (TSP). A chaotic approach to solving
optimization problems using the technique of simulated annealing
has been given by Chen and Aihara (1995). This is different from
the model proposed earlier by Aihara et al. in that a negative self-
coupling added to the former and thereafter, slow removal of the
same produces a transient chaos. This transient chaos is used for
combing or self-organizing the search space, thereby producing
significantly better results over other techniques which use
artificial neural networks (ANNs) to optimize with or without
simulated annealing.

It has been found through study that swarms and their
behavior can be applied to solve a plethora of engineering
problems. Reif and Wang (1999) used a method called the “social
potential fields” to define inverse-power force laws which dictate
“social relations” between robots. An individual robot's motion is
controlled by the resultant artificial force imposed by other robots
and other components of the system. Levine and Rappel (2001)
investigated a discrete model consisting of self-propelled particles

that obey simple interaction rules. In this work, they demonstrated
the self-organization properties of the model and the existence of
coherent localized one- and two-dimensional solutions. In the
one-dimensional solution, we get a constrained flock which is
finitely extant with sharp drops of density down to zero at the
edges. Two-dimensional vortex solutions are those in which the
particles of interest rotate around a center common to all of them.
Random initial conditions, even when confining boundaries
are absent, can also engender the latter. Finally, Suzuki and
Yamashita (1999) considered a system of multiple mobile robots
in which each robot, at infinitely many unpredictable time instants,
observes the positions of all the robots and moves to a new position
determined by the given algorithm. The work investigates a number
of formation problems by robots where they form geometric
patterns in the plane where they move. Techniques of converging
robots to a given point and moving a system of mobile robots to a
point in a given number of finite steps are considered.

In more recent times, Cai et al. (2011) have researched on the
problem of swarm stability of high-order linear-time-invariant
(LTI) systems with directed graph topology. Necessary and suffi-
cient conditions for swarm stability depending on the graph
topology, the dynamics of the agents and the interaction between
neighbors are derived. Ranjbar-Sahraei et al. (2012) have proposed
a novel decentralized adaptive control scheme for multiagent
formation control based on an integration of artificial potential
functions with robust control techniques. Robust stability has
been demonstrated using Lyapunov-function-based methods,
which shows the robustness of the controller with respect to
disturbances and system uncertainties. Dolev et al. (2013) have
developed a two-phase distributed self-stabilizing scheme for
producing a bounded hop-diameter communication graph. Hou
and Cheah (2012) have presented a dynamic compound shape
control for a swarm of robots. Each basic shape is specified by the
corresponding inequality functions. With this new definition, a
variety of interesting compound shapes, which are difficult to form
by the existing methods, can be easily formed. A Lyapunov-like
function is presented for stability analysis of the swarm systems.
Guéret et al. (2012) have extended swarm computing to the
Semantic Web, a system that promotes the development of
the current scenario of the Web by enabling users to find and
share information easily. As networking becomes more and more
involved and data sets get bigger and bigger, evolutionary and
swarm approaches are used to solve these pertinent problems.
Yu et al. (2013) have investigated how an inversion of the swarm
dynamics can help redefine the rules by which the individual
agents operate in order to reach a goal of mutual interest. They
have then applied this formulation to the case concerning the
point defence of a very important person situated between two
swarms, one of which is attacking and the other defending.

Inspired by the flocking dynamics proposed by Cucker and
Smale (2007), we present a swarming dynamics and demonstrate
its properties sequentially. The dynamics is found to have a
conditional stability criterion, ensuring the satisfaction of which
we can successfully use the model for multifarious purposes. It
turns out to be capable of demonstrating converging, limit cyclic
and conditionally chaotic behavior. Since we always want to avoid
chaos in the system, proper tuning of the parameters will allow us
to work towards this particular goal.

For the demonstration of stability and the arising of conditional
chaos, we use the Lyapunov energy function construction method
and the nature of the sign of the Lyapunov exponent (Cencini et al.,
2010; Wolf et al., 1985). The analytical treatment is supported by a
copious number of computer simulations, all of which indicate the
validity of the former. Finally, we conclude by proposing a simple
yet effective practical problem to which the newly proposed
dynamics can be efficiently applied.
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2. Proposal of the dynamics

The proposed swarm dynamics consists of M individual agents
moving in an n-dimensional Euclidean space. Regardless of their
dimensions, the individuals of the swarm are represented by
points in space. The motions of the individuals are, however,
interlinked. Corresponding to each individual's position, there is a
point xiARn and the velocity of the swarm members is dictated by
the relation

_xi ¼ f ðxi�xjÞ; ð1Þ
where f(x) is given by

f ðxÞ ¼ �kx

½s2þ JxJ2�β
: ð2Þ

Eqs. (1) and (2) represent the motion of the swarm members
but do not specify how the individuals are motivated towards a
particular point of convergence. It represents the interconnection
between the individuals as they explore the n-dimensional space.
In order to represent realistic biological behavior or multi-agent
systems, one requires a function which will guide the swarm
towards a region, while they communicate with each other. This
can be achieved either by a gradient system or by moving the
individuals towards the best point in space by introducing another
term in Eq. (1). In the former case the governing equation of
motion of the particles looks like

_xi ¼ �∇xiξðxiÞþ ∑
M

j ¼ 1;ja i

kðxj�xiÞ
½s2þ Jxj�xi J2�β

; ð3Þ

where ξ : Rn⟶R.
The function ξ may be a scalar field representing the concen-

tration of nutrients (as was used in Gazi and Passino's, 2004
paper), or it may represent just a function to be optimized. Eq. (3)
will direct the motion of the swarm towards the optima of ξ. Even
though the center of the swarm moves towards the optima, the
individuals of the swarm may still oscillate about the optima with
finite velocities.

Instead of using the gradient system, we may however direct
the swarm towards the optima by including a term in Eq. (1) as

_xi ¼ ∑
M

j ¼ 1;ja i

kðxj�xiÞ
½s2þ Jxj�xi J2�β

þ kðp�xiÞ
½s2þ Jp�xi J2�β

; ð4Þ

where pARn is the optimum of the artificial potential field
considered to simulate the real world application. The field may
be the same as ξ. In this case, the individuals communicate to

move towards the best possible position achieved. p represents the
best possible position detected so far by the swarm and is updated
in the course of motion. The best position may represent the point
with highest concentration of nutrients; or it may represent the
point having maximum temperature in a temperature field; or
simply the optima of an objective function. The choice of the field
depends on the problem domain. p may also represent the
position of a hostile target registered by the detecting system,
and missiles are fired to converge at p. We have considered a
temperature field in the case of the automated fire engines.

The model we propose in Eq. (4) is able to achieve better result
when the scalar field is not well-behaved, i.e. the function contour
is not smooth and hence the gradient does not exist at every point
in the domain of the field. The first term in the expression for _x
represents the interconnection and communication between the
individuals as they traverse. The second term converges the
individuals of the swarm towards a particular point in the
N-dimensional space. It facilitates modeling swarm behavior
where the individuals converge to a particular point and their
velocity reduces to zero as they reach the desired point. This is
often the situation which we find in nature. A swarm of bees
would move in search of nectar and settle down on the flower
when they reach there. Here, the point p is analogous to the
position of the flower, and the motion of the bees can be modeled
by our dynamics. We have demonstrated the application of this
modeling to an automated fire engine system in Section 5. The
presence of the second term in _xi also ensures that even if p varies,
the swarm would still be directed towards p. This extends
application of the dynamics to multi-agent systems where a target
is to be tracked and a swarm is directed towards a time-varying
target. Figs. 1–3 show the function f ðxÞ ¼ �kx=½s2þ JxJ2�β , which
evidently forms the attractant–repellent profile, interlinking the
individuals of the swarm. In Gazi and Passino's paper, the
attractant–repellent profile did model the foraging swarms. Yet,
there remained a discrepancy regarding the attraction tending to
infinity at infinite separation. This, however, is not biologically
feasible. In biological systems, there is often communication
among organisms through release of pheromones. This interaction
is possible in a colony or surrounding colonies, but cannot extend
to infinite distance. Our dynamics, thus, represents a physical
scenario where the individuals in a swarm will lose their co-
ordination and cease to attract each other when they are very far
apart. They have to be at a critical distance, say eyesight distance
or receptive distance, so that attraction can be possible. In this
way, the dynamics seems to be in perfect harmony with real

Fig. 1. Effect of varying k on f(x) with s¼ 3:5 and β¼ 1:2. Fig. 2. Effect of varying s on f(x) with k¼1.5 and β¼ 1:2.
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biological phenomena, since, in nature, the attraction, or desire to
move in co-ordination occurs only between individuals in close
proximity.

Figs. 1–3 illustrate the attractant–repellent profile in the
proposed dynamics and the influence of the variation of different
parameters on it. These can be compared with Fig. 4, which shows
the attractant–repellent profile in the social foraging swarm
dynamics presented by Gazi and Passino (2004). f(x) being an
odd function in x ensures that the center of the swarm would
move towards the optima, when a gradient system is introduced
along with the dynamics. The sensing range of the swarm
individuals is governed by the parameters s, β and k. The function
f(x) has an extremum when

f 0ðxÞ ¼ 0 ) x¼ 7
s

2β�1
; ð5Þ

provided that β41
2 . Upon calculating f ″ðxÞ we can show that f(x)

has a maxima when x¼ �s=ð2β�1Þ and a minima when
x¼ þs=ð2β�1Þ with β41

2 . Thus, the critical distance up to which
attraction is possible depends on s, β and k, because we can define
any particular value of f(x) for which we can consider attraction. As
our dynamics models the realistic situation of attraction up to a
critical distance due to limitations on sensing, the initial positions
of individuals for convergence are determined by the parameters
of the dynamics. The assumption that each individual of the
swarm knows the position of the other is not difficult to be
realized. In multi-agent systems, robots can have a Global Posi-
tioning System (GPS) technology built into them. In the case of
biological swarms, sensing by sight or chemicals takes place. In
addition, the detection of favorable regions in space is achieved by
using sensors in multi-agent systems. We desire to model the
situation where the individuals of the swarm converge to the

desired position and settle there. By varying the parameters of
the dynamics, we are also able to model a situation where the
individuals reach the desired region, and then exhibit limit cyclic
behavior. The situation arises when a swarm of bees reach the
favorable region of flowers and move around, collecting nectar
from various flowers.

3. Analysis of the conditional stability of the proposed system

Up to this point, we have outlined a dynamics, the working of
which is formulated by the fundamental equation

_xi ¼ ∑
M

j ¼ 1;ja i

kðxj�xiÞ
½s2þ Jxj�xi J2�β

þ kðp�xiÞ
½s2þ Jp�xi J2�β

;

where k, s and β are positive constants. To test the stability of the
system we intuitively construct a Lyapunov Energy Function
(Malisoff and Mazenc, 2009)

Lðxi; xjÞ ¼ � ∑
M

i ¼ 1

Z xi

0
∑
M

j ¼ 1;ja i

kðxj�ηiÞ
½s2þ Jxj�ηi J

2�β

 
þ kðp�ηiÞ
½s2þ Jp�ηi J

2�β

!
dηiþC;

ð6Þ
where C is a constant given by

C ¼M2
Z xi

0

kðxj�ηiÞ
½s2þ Jxj�ηi J

2�β
dηi

" #
xi ¼ p;xj ¼ p

: ð7Þ

For Lðxi; xjÞ to be a Lyapunov Energy Function, we first take note
of the fact that

(a) Value at critical point(s): Lðp; pÞ ¼ 0.
(b) Partial derivatives: The partial derivatives ∂L=∂xi, ∂L=∂xj

both exist.
(c) Value at other points: Further Lðxi; xjÞ will be greater than zero

for xi; xjap if

∑
M

j ¼ 1;ja i

kðxj�xiÞ
½s2þ Jxj�xi J2�β

þ kðp�xiÞ
½s2þ Jp�xi J2�β

40;

which after a little bit of algebraic manipulation boils down to

xio
∑M

j ¼ 1;ja i

xj
½s2þ Jxj�xi J2�β

þ p

½s2þ Jp�xi J2�β

∑M
j ¼ 1;ja i

1

½s2þ Jxj�xi J2�β
þ 1

½s2þ Jp�xi J2�β
; ð8Þ

when k¼0.

Now, to test the stability of the system we calculate

dL
dt

¼ ∂L
∂xi

dxi
dt

¼ � ∑
M

i ¼ 1
∑
M

j ¼ 1;ja i

kðxj�xiÞ
½s2þ Jxj�xi J2�β

"

þ kðp�xiÞ
½s2þ Jp�xi J2�β

#
dxi
dt

¼ � ∑
M

i ¼ 1

dxi
dt

� �2

o0: ð9Þ

Since dL=dto0, the dynamics is asymptotically stable if the
condition (8) is met. However, condition (8) signifies a realistic
constraint that the system will be stable only when the agents are
initially placed keeping their separation within a limit. Thus, this
system is asymptotically stable if a certain condition is met and
thus can form a swarm.

Figs. 5–8 show the convergent and limit-cyclic behaviors of the
system where we choose β¼ 1:2 and s¼ 3:5. These values are
chosen for experimental purpose only and accordingly kð40Þ is
chosen so that the system exhibits stable behavior. Increasing
the value of k primarily leads to limit cyclic behavior as shown in
these figures and a subsequent increase in k above a threshold,

Fig. 3. Effect of varying β on f(x) with k¼1.5 and s¼ 3:5.

Fig. 4. Attractor–repellent profile in the social foraging swarm of Gazi and Passino
(2004).

S. Das et al. / Engineering Applications of Artificial Intelligence 30 (2014) 189–198192



depending upon the chosen values of s and β may lead to chaos as
we are going to show in the subsequent section.

4. Rise of conditional chaos

In any swarming dynamics, emergence of chaos is a very
important situation to be dealt with, as it is known that during
chaotic condition the agents of the swarm converge to a region
called the strange attractor within which the motion of the agents
cannot be predicted from their initial conditions. So the applica-
tions where convergence is a prime objective should be devoid of

chaos and to ensure it we must know the precise value of the
parameters for which chaos may arise.

To find out the explicit range of the parameters for which chaos
can arise in the proposed system, we will make use of a standard
method based on Lyapunov exponents. The Lyapunov exponent
(Mosekilde, 1996; Strogatz, 1994) of a dynamic system is given
by

λ¼ lim
N-1

1
N
ln

dðXnþ1Þ
dXn

����
����;

where the system is defined as _X ¼ f ðXÞ, Xn and Xnþ1 being the
positions of X calculated at the nth and ðnþ1Þth iterations
respectively. If λ40, the given dynamic system is said to be
chaotic. Now, discretizing the differential form of the proposed
dynamics, we get

_xi ¼
xiðtþ1Þ�xiðtÞ

ðtþ1Þ�t
¼ xiðtþ1Þ�xiðtÞ: ð10Þ

Therefore, substitution of (10) into (4) gives

xiðtþ1Þ�xiðtÞ ¼ ∑
M

j ¼ 1;ja i

kðxj�xiÞ
½s2þ Jxj�xi J2�β

þ kðp�xiÞ
½s2þ Jp�xi J2�β

: ð11Þ

For the sake of simplicity and convenience, we go for a single
dimensional analysis, and replace Jxj�xi J2 as (xj�xi)2. Thus,
Eq. (11) can be written as

xdi ðtþ1Þ�xdi ðtÞ ¼ ∑
M

j ¼ 1;ja i

kðxdj �xdi Þ
½s2þðxdj �xdi Þ2�β

þ kðpd�xdi Þ
½s2þðpd�xdi Þ2�β

: ð12Þ

Differentiating both sides w.r.t. xdi ðtÞ

dxdi ðtþ1Þ
dxdi ðtÞ

¼ 1�k ∑
M

j ¼ 1;ja i
Zðxdj �xdi Þ�Zðxdi �pdÞ

" #
; ð13Þ

where

ZðxÞ ¼ 1

½s2þx2�β
� 2βx2

½s2þx2�βþ1
:

Now Z(x) has an extremum if

dZðxÞ
dx

¼ 0; ð14Þ

which after a little algebraic manipulation gives the roots

x¼ 0; 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s2

2β�1

s
: ð15Þ

Now, by an elaborate but straightforward calculation which we
have not included here due to space insufficiency, it can be shown

Fig. 5. Stable behavior of x(t) when k¼0.5, s¼ 3:5, β¼ 1:2 and p¼2.5.

Fig. 6. Phase portrait of the stable behavior of x(t) when k¼1.7, s¼ 3:5, β¼ 1:2 and
p¼2.5.

Fig. 7. Limit cyclic behavior of x(t) when k¼4.0, s¼ 3:5, β¼ 1:2 and p¼2.5.

Fig. 8. Phase portrait of the limit cyclic behavior of x(t) when k¼4.0, s¼ 3:5,
β¼ 1:2 and p¼2.5.

S. Das et al. / Engineering Applications of Artificial Intelligence 30 (2014) 189–198 193



that

d2ZðxÞ
dx2

" #
x ¼ 0

o0:

So Z(x) has a maxima at x¼0 and

Zmax ¼ 1
s2β

:

From Eq. (15), we see that if βr1
2 , x¼0 is the only extremum of

Z(x) which is a maxima and therefore Z(x) does not have any
distinct minima. But we see that when xo0, Z0ðxÞ40, i.e., Z(x) is
increasing and again when x40, Z0ðxÞo0, i.e., Z(x) is decreasing.
Moreover x-71 ) ZðxÞ-0. Thus, we can conclude that the
x-axis is an asymptote of Z(x), and the lower bound of Z(x) can be
taken as zero. So for βr1

2

Zmin ¼ 0:

Fig. 9 depicts the plot of Z(x) vs x when βr1
2 and this supports

our inference. When β41
2 , it can be shown that Z ¼ Zmin when

x¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s2

2β�1

s

and

Zmin ¼
�2s2

s2 3
2β�1

þ1
� �� �βþ1

:

as depicted in Fig. 10. So, the function Z(x) is bounded. Now, to
ensure stability

dxdi ðtþ1Þ
dxdi ðtÞ

�����
�����r1

) �1r1�k ∑
M

j ¼ 1;ja i
Zðxdj �xdi Þ�Zðxdi �pdÞ

" #
r1:

But as Z is bounded and k40

1�kMZmaxr
dxdi ðtþ1Þ
dxdi ðtÞ

r1�kMZmin: ð16Þ

Therefore

1�kMZmaxZ�1 ) kr 2
MZmax

; ð17Þ

and

1�kMZminr1: ð18Þ
Combining Eqs. (17) and (18), we get

0rkr 2
MZmax

: ð19Þ

For emergence of chaos

dxdi ðtþ1Þ
dxdi ðtÞ

�����
�����41:

So from (16) it can be concluded that

1�kMZmin41 ) kMZmino0: ð20Þ
Now it is possible only if Zmino0 as k40. Again we need

1�kMZmaxo�1 ) k4
2

MZmax
: ð21Þ

Combining (20) and (21) we get that the system will show chaotic
behavior iff Zmino0 and k42=MZmax which in turn gives

β41
2 ;

and

k4
2

MZmax
:

The chaotic behavior of the dynamics is duly illustrated in Fig. 12
where the both the phase plot and the x(t) vs t plot are given.
A plot of the Lyapunov exponent vs value of k is also given in
Fig. 11. Here β is chosen to be 1.2 as β40:5 condition is necessary
to make Lyapunov exponent positive for k42=MZmax ensuring
chaos. s is chosen as 3.5 and accordingly in Fig. 12 k is chosen as 11
so that it satisfies condition (21).

Fig. 9. Z(x) vs x when βr1
2 .

Fig. 10. Z(x) vs x when β41
2 .

Fig. 11. Variation of Lyapunov exponent with the positive values of k when s¼ 3:5,
β¼ 1:2 and p¼2.5.
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5. Implementation in a real-life problem

The dynamics we present in this paper can be purposefully
incorporated in multi-agent systems and those systems can
effectively be used in real-life problems. This section illustrates a
simple but effective use of the swarming dynamics and its
machine-simulations.

The stable behavior of the dynamics described has been
successfully applied to a multi-robot system where each robot is
an automatic fire-extinguisher. Now every robot in this system has
a temperature sensor having the ability to sense the local tem-
perature and can communicate with others through some wireless
link making them able to send and receive the temperature-
related data. Let us assume that a fire has started somewhere in
the regionwhere the extinguishers are deployed. So there will be a
spatially varying temperature field in that region with its maxima
at the point of the fire. Now, if we apply the proposed dynamics in
the motion of those fire-tender robots, they can automatically
detect the place where the fire has broken out and extinguish it.
The robot must sense the temperature field and the system should
converge to the point where the fire started. We have shown that
the dynamics that we have proposed converges to the point p for
certain values of k, s and β ensuring that there will be no chaotic
fluctuations. But in this problem, the required point of conver-
gence is not known beforehand and is thus to be automatically
detected by the agents. This can be achieved by the inclusion of a
simple memory system in which each agent can keep track of the
best position i.e., the highest temperature found by them till now.
This best position will be designated as p, and thus the swarm will
have a tendency to move towards this position. However, as there
remains attraction and repulsion among the agents, they also have
a tendency to explore new areas and there will be a strong
probability that p will be updated in their course of motion. Thus
ultimately the whole swarm will be able to converge to the
position of the fire provided that the positions of the agents are
initiated keeping the diversity. However, the dynamics does not
guarantee that all the robots will converge to the position of fire,
but can assure that they will converge to the best position ever
achieved.

Here we give some instances of computer-simulation of this
real life problem where the temperature field is assumed to be a
shifted inverted sphere function with its maxima at different
points for different examples. Figs. 13 and 14 show that the
convergence of all the agents to the respective maxima is achieved
in every case. However for a wide search-space, a higher number
of agents yield better result and the value of s should be
accordingly high to get rid of chaos.

Fig. 13 shows the motion of five agents where the total number
of agents M¼10, s¼ 3:5, k¼1.7. Fig. 14 shows another case where
these values are 100, 40.5 and 1.7 respectively. The maxima of the
temperature field was at ð2:5;2:5Þ and ð15;15Þ in these two cases.

From the successive positions of the agents it is clear that in the
first case the search space is smaller and the speed of the
convergence is more than that in the second case.

The situation is indeed averse when the fire spreads from the
starting point. This can often take place when there is the presence

Fig. 12. Chaotic behavior of x(t) when k¼11.0, s¼ 3:5, β¼ 1:2 and p¼2.5; left figure: plot of x(t) vs t, right figure: phase portrait.

Fig. 13. Convergence of the agents in a 2D field whenM¼10, s¼ 3:5, k¼1.7, β¼ 1:2
and the maxima is at ð2:5;2:5Þ.

Fig. 14. Convergence of the agents in a 2D field when M¼100, s¼ 10:5, k¼1.7,
β¼ 1:2 and the maxima is at ð15;15Þ.
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of inflammable articles in the vicinity of the origin of fire. In such a
situation, it is required that the automated fire engines sweep the
neighborhood region, and not just converge at the starting point of
fire. The dynamics which we have presented is able to perform
this operation by exploiting the limit cyclic behavior. The extensive
analysis of the dynamics provided us the parameter tuning
requirements that would cause the agents to surround the point
of fire. The flames, even after spreading from the starting point,
would be efficiently doused. The essence of the chaos, limit cycle
and convergence analysis lies in the ability to subtly adjust the
dynamics of the agents based on the domain necessity. We can
also organize the agents such that half of the agents are para-
meterized to undergo limit cyclic behavior and the remaining
agents converge to the best obtained maximum temperature
point. This would create a dual effect of extinguishing the flames
at the origin of fire, as well as prevent any possibility of spreading.

Figs. 15 and 16 demonstrate the performance of the fire-
extinguishing system that exploits limit cyclic behavior and thus
the agents explore the neighborhood area of the temperature
maxima. Fig. 15 shows the limit-cyclic oscillations of five agents
when M¼10, s¼ 3:5, k¼6.0. In Fig. 16, however, M¼100, s¼ 40:5,
k¼130. In this case a greater number of agents need greater values
of s and k to achieve limit-cyclic behavior. In both the figures, it
can be seen that the agents effectively traverse the area surround-
ing the maxima of the temperature contour.

The dynamics adapts itself suitably to various problem
domains. Even though we have simulated the multi-agent fire
engines, the dynamics could also be used in a patrolling system.
The situation is much akin the one in which the fire spreading is

prevented by surrounding the fire engines around the starting
point. The limit cyclic behavior finds utmost prominence in such
applications. Situations in which we do want the agents to
converge can be achieved as in the case of the engines converging
to the point of fire. Thus, the fire engines simulation is just a
specialized case of the variety of real life problems of target
detection, patrolling, optimization that the dynamics can be
utilized in. Only requirement is the requisite parameter tuning
for the relevant field. A similarity in all the applications is the
presence of a destination and a multi-agent system. For a social
foraging, destination is the food source, the organisms constitute
the multi-agent system; for patrolling, the military base may be
the destination, and helicopters are the agents. Proceeding by a
similar analogy, the target and the missiles in a radar, the origin of
fire and the fire engines are the destination and multi-agent
system pairs for the two situations. An optimization problem
may consider the optima of the objective function as the destina-
tion, and the swarm traverses the search space to find the optima.

6. Conclusion

The ideas presented in this paper have taken concepts from the
real-time behavior of multi-agent swarms. We have successfully
demonstrated that the system is conditionally stable and that the
dynamics can be applied at ease to all those cases which ensure
the satisfaction of the stability condition. The attractant–repellent
profile of the proposed dynamics has been compared to that of the
social foraging swarm dynamics. It has indeed been found that in
terms of practicality, the attractant–repellent profile of the pro-
posed dynamics is conceptually superior to the social foraging
swarm dynamics in the sense that it prevents infinite attraction
between any two members of the swarm at infinite distance. The
analytical treatments undertaken indicate that this system can
indeed be stable and hence is able to model a swarm. Accompany-
ing this observation is the fact that the dynamics is able to exhibit
convergent, limit cyclic and chaotic behavior. It has also been seen
that the inclusion of the second term in the equation that defines
the preliminary behavior of the dynamics tends to converge the
particles of the swarm towards a particular point. This highly
significant observation has been used in the simulation of an
automatic system of fire detection and extinguishing by a system
of fire engines. In addition, we can also judiciously use the limit
cyclic behavior of the system if we keep in mind the fact that when
a fire does break out in a particular area, it is never localized.

The possible future extension of this work can be the case of
time-varying field which is more realistic in the case of a moving
“target” or “threat”. Again, the function f ðxi�xjÞ in Section 2 can
itself be dynamic such that f ¼ f ðx; tÞ and that will be more
analogous to biological swarm where the velocity updation rule
of each agent may change with time.

Appendix A. Evaluation of the constant term in the Lyapunov
energy function

In Section 3, during the construction of the Lyapunov function
for proving stability criteria, we have incorporated a constant C in
order to make Lðp; pÞ ¼ 0 in Eq. (6). The constant C has been given
as

C ¼M2
Z xi

0

kðxj�ηiÞ
½s2þ Jxj�ηi J

2�β
dηi

" #
xi ¼ p;xj ¼ p

:

Fig. 15. Convergence of the agents in a 2D field when M¼10, s¼ 3:5, k¼6.0,
β¼ 1:2 and the maxima is at ð2:5;2:5Þ.

Fig. 16. Convergence of the agents in a 2D field when M¼100, s¼ 40:5, k¼130,
β¼ 1:2 and the maxima is at ð2:5;2:5Þ.
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Now to make Lðp; pÞ ¼ 0, we need

� ∑
M

i ¼ 1

Z xi

0
∑
M

j ¼ 1;ja i

kðxj�ηiÞ
½s2þ Jxj�ηi J

2�β

 "
þ kðp�ηiÞ
½s2þ Jp�ηi J

2�β

!
dηi

#
xi ¼ p;xj ¼ p

þC ¼ 0:

ð22Þ
Now, when xi ¼ p and xj ¼ p 8 i; jAZþ , the L.H.S of Eq. (22) will

readily boil down to

�M2
Z xi

0

kðxj�ηiÞ
½s2þ Jxj�ηi J

2�β
dηi

" #
xi ¼ p;xj ¼ p

; ð23Þ

which is exactly the same as the expression of C given in Eq. (7)
with only the sign reversed. Obviously, when added with the
constant C, expression (23) results to zero. So, from Eq. (22), it is
clear that Lðp; pÞ is zero when xi ¼ p and xj ¼ p8 i; jAZþ .

Now we will evaluate this constant C for the special case where
xi; xjAR, i.e. n¼1. In this condition we can replace Jxj�xi J2 by
(xj�xi)2. So the definite integral in the expression (23)
becomes

Z xi

0

kðxj�ηiÞ
½s2þðxj�ηiÞ2�β

dηi: ð24Þ

Now substituting s2þðxj�ηiÞ2 by z and following the steps of
standard integral calculation the integral (24) results in

k
2ðβ�1Þ

1

½s2þðxj�xiÞ2�β�1
� 1

ðs2þx2j Þβ�1

2
4

3
5;

which in turn gives

k
2ðβ�1Þ

1
s2ðβ�1Þ �

1

ðs2þp2Þβ�1

" #
;

when xi ¼ p and xj ¼ p.
So the value of the integral in the expression (24) is ultimately

given by

�kM2

2ðβ�1Þ
1

s2ðβ�1Þ �
1

ðs2þp2Þβ�1

" #
;

and hence C is given by

C ¼ kM2

2ðβ�1Þ
1

s2ðβ�1Þ �
1

ðs2þp2Þβ�1

" #
; ð25Þ

when xi; xjAR.

Appendix B. Symbols used in the paper

Symbol
(s)

Definition

xi(t) position of the ith particle at tth instant
xdi ðtÞ dth dimension of xi(t)

k;s;β parameters that control the velocity of the agents
according to Eqs. (1) and (2)

ξðxiÞ a scalar function of xi; ξ : Rn-R
Lðxi; xjÞ Lyapunov energy function
M total number of agents
p convergence point of the system (stable limit point),

modeled as the optima of an artificial scalar field
λ Lyapunov exponent
Z a function of x defined in Eq. (13)
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