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Abstract— Fractional-order dynamical systems are used to
describe processes that exhibit temporal long-term memory
and power-law dependence of trajectories. There has been
evidence that complex neurophysiological signals like elec-
troencephalogram (EEG) can be modeled by fractional-order
systems. In this work, we propose a model-based approach
for closed-loop Transcranial Magnetic Stimulation (TMS) to
regulate brain activity through EEG data. More precisely,
we propose a model predictive control (MPC) approach with
an underlying fractional-order system (FOS) predictive model.
Furthermore, MPC offers, by design, an additional layer of
robustness to compensate for system-model mismatch, which
the more traditional strategies lack. To establish the potential
of our framework, we focus on epileptic seizure mitigation
by computational simulation of our proposed strategy upon
seizure-like events. We conclude by empirically analyzing the
effectiveness of our method, and compare it with event-triggered
open-loop strategies.

I. INTRODUCTION

In the context of neurophysiological signals, tempo-
ral fractional properties in both health and disease states
have become apparent and, with it, fractional-order sys-
tems have demonstrated a huge potential for clinical
applications [1]–[7]. Practically, this leads signals to become
non-stationary and to possess long-term memory dependen-
cies with themselves, with the backwards-decaying weights
of such dependencies following a power-law distribution [8].
The persisting temporal dependencies illustrated by these
systems have given rise to fractional-order based modeling,
design, and analysis of novel neurotechnologies.

Recently, dynamical spatiotemporal fractional models
have been proposed as a tool to model neurophysiolog-
ical signals suitable to deal with structured data and to
equip us with modeling capabilities that capture spatial
(i.e., the contributions of the signal’s components into
each other) and temporal long-range memory through the
so-called fractional-order coefficients associated with the
power-law exponents [9]–[15], and possibly under unknown
unknowns [16], [17].

Notwithstanding the above, the main advent of
model-based approaches is that we can understand
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how an external signal or stimulus would craft the dynamics
of the process. Simply speaking, it enables us to design
a sequence of interactions (i.e., a control strategy or law)
with the system such that we can steer its dynamics towards
satisfying desirable properties. That said, due to the highly
dynamic nature of neurophysiological processes, it is
imperative that we consider feedback mechanisms [18]. In
other words, we need to leverage the continuous flow of
measurements of the system to tune (for the individual’s
process) the control strategy. A particularly successful
strategy that has achieved remarkable success in several
engineering applications is the strategy of model predictive
control (MPC) that consists of three key ideas [19]–[24]:
(i) a model-based approach; (ii) capability of predicting
the evolution of the system and its states upon a devised
feedback control strategy that aims to optimize an objective
that encapsulates the risk assessment of abnormal behavior;
and (iii) receding finite-horizon re-evaluation of the control
strategy performance devised in the previous point.

In the context of neurophysiological processes, we propose
to leverage fractional-order models to equip us with the
aforementioned prediction and control capabilities that go
hand in hand with the closed-loop design of Cyber-Physical
Systems (CPSs). As a consequence, we will be able to
develop stimulation strategies in the form of Transcranial
Magnetic Stimulation (TMS) from electroencephalographic
(EEG) data, and use it to annihilate or mitigate the overall du-
ration and strength of an epileptic seizure. Notwithstanding,
we believe that similar design and strategies can be envi-
sioned in other contexts where closed-loop deep-brain elec-
trical stimulation is available, e.g., Parkinson’s disease [25],
[26], Alzheimer’s disease [27], depression [28], [29], and
anxiety [30], just to mention a few.

To summarize, in what follows we introduce in a ped-
agogical manner the control mechanisms to be deployed
as part of future neurophysiological cyber-physical systems,
with particular emphasis on TMS for epilepsy. Ultimately,
the integration of these design features will lead to more
reliable CPSs that will immediately improve, or otherwise
bring a positive impact, on the quality of life of the patients
that qualify for the use of such technologies.

The paper is organized as follows. Section II introduces
the preliminary setup of our problem. Section III presents the
fractional-order model predictive control framework. Finally,
we present illustrative examples demonstrating the efficacy
of epileptic seizure mitigation using TMS in Section IV.
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II. PRELIMINARIES

There are primarily two kinds of brain stimulation strate-
gies that exist, which include open-loop and closed-loop
strategies. Open-loop stimulation strategies consist of any
stimulation strategy that does not utilize current brain activity
data to regulate the stimuli applied to the patient’s brain. On
the other hand, closed-loop (brain-responsive) strategies con-
sist of stimulation treatments based on automatic electrical
stimulation directly influenced by the present (i.e., real-time)
behavior being observed through continuous recording of
brain activity. Past data can also be used in this strategy,
but due to limited storage capabilities, these mechanisms are
usually designed to depend exclusively on the actual recorded
and stored data at a given time, consisting of a finite temporal
window ranging from a fixed number of past instances of
discretized time to the present measurement.

A. Transcranial Magnetic Stimulation

Transcranial Magnetic Stimulation (TMS) is a noninvasive
form of brain stimulation created by inducing electric cur-
rents at specific areas of the brain by the help of a changing
magnetic field using electromagnetic induction. This is done
using an electric pulse generator connected to a magnetic
coil, which in turn, is connected to the scalp. Although
research on this form of neurostimulation is still evolving,
it has been shown to demonstrate therapeutic potential in
neurodegenerative disorders like Alzheimer’s disease [31],
motor neuron disease [32], and stroke [33].

B. Linear fractional-order systems

For many biological systems, linear time-invariant (LTI)
state-space models are insufficient to accurately capture the
real evolution of the systems for anything other than a very
small interval of time into the future, given that the current
state of the system may have a non-negligible dependence
on several past states, or even from the states ranging from
the entire period of time so far. In this paper, we focus solely
on discrete-time systems and control, and we will model the
above scenario as

xk+1 = fk(xk, xk−1, . . . , x0) + wk, (1)

with known functions fk : Rn(k+1) → Rn for k ∈ Z+ and
wk being the process noise. Alternatively, we may consider
finite-history models of the form

xk+1 = fk(xk, . . . , xk−p+1) + wk, (2)

such as multivariate autoregressive (MVAR) models

xk+1 =

p−1∑
j=0

Ajxk−j + wk, (3)

with A0, . . . , Ap−1 ∈ Rn×n. However, system identification
for such autoregressive models can become mathematically
intractable or suffer issues of numerical instability that
originate from the possibly large number of parameters to
be estimated (n2p entries in A0, . . . , Ap−1, plus usually a
certain other number for the covariance matrix of the noise).

For the reasons covered above, we introduce the so-called
linear fractional-order system (FOS) models, of the form

∆αxk+1 = Axk + wk, (4)

where the state coupling matrix A ∈ Rn×n and the vector
of fractional-order exponents α ∈ Rn+ are now the only
parameters to be estimated. This model can be rewritten [34]
as

xk+1 =

k∑
j=0

Ajxk−j + wk, (5)

which can be readily approximated as an MVAR model akin
to (3). Furthermore, for the simulations conducted in this
paper, we will model wk as an additive white Gaussian noise
(AWGN).

III. FRACTIONAL-ORDER MODEL PREDICTIVE CONTROL

We start by showing that (3) can be written as an aug-
mented LTI system model. To do this, let

x̃k =

 xk
...

xk−p+1

 (6)

denote the so-called augmented state vector, with the un-
derstanding that xk = 0 for k ∈ {−1, . . . ,−p + 1}. Then,
clearly, the first block in x̃k+1 can be expressed as a linear
combination of the block in x̃k through (3). On the other
hand, the remaining p − 1 blocks in x̃k+1 precisely match
the first p− 1 blocks of x̃k. More precisely, we have

x̃k+1 =


A0 . . . Ap−2 Ap−1
I . . . 0 0
...

. . .
...

...
0 . . . I 0


︸ ︷︷ ︸

=Ã

x̃k +


I
0
...
0


︸︷︷︸
=B̃w

wk

= Ãx̃k + B̃wwk (7)

for k = 0, 1, . . ., which is an LTI model that we will refer
to as the p-augmented LTI system.

It should also be noted that, if we consider a time-varying
FOS system

∆αxk+1 = Akxk + wk, (8)

then (3) would still be valid, except that Aj would need to be
indexed by k as well and we could use the same reasoning
to derive a finite-history approximation

x̃k+1 = Ãkx̃k + B̃wwk, (9)

with the only exception that this p-augmented model is linear
and time-varying.

These representations will play a key role in the imple-
mentation of our proposed model predictive control strat-
egy, since such an MVAR approximation of an FOS plant,
re-written as an LTI model, allows for efficient numerical
solutions to be determined for quadratic-cost optimal control.
The reason for this is that a full representation of an
FOS model would require increasing memory storage, while
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making the problem of computing optimal control actions
an increasingly computationally demanding task. Naturally,
such a completely faithful representation of fractional-order
systems would therefore become intractable for most practi-
cal applications at likely little cost benefit, since the temporal
dependence, while a long-term one for FOS models, is also
decaying with respect to the weights.

A. Model Predictive Control

We now focus on the design of a full-state feedback
controller for a linear time-varying system over discrete-time,

xk+1 = Akxk +Bkuk +Bwk wk, (10)

where wk denotes a sequence of independent and identi-
cally distributed (i.i.d.) random vectors, following a standard
normal distribution with zero mean and identity covariance
matrix. The weight matrices Bwk are intended to make the
notation cleaner and add flexibility to the process noise
w′k = Bwk wk since the covariance matrix of w′k does not
need to be positive definite, which is a strict requirement
for Gaussian distributions. The objective is to design the
feedback controller such that it minimizes a quadratic cost
functional of the input and state vectors over an infinite time
horizon. In other words, the objective is to determine the
sequence of control inputs u0, . . . , uN−1 that minimizes a
quadratic cost function of the form

minimize
u0,...,uN−1

E

{
N∑
k=1

‖xk‖2Qk
+

N∑
k=1

cTkxk +

N−1∑
k=0

‖uk‖2Rk

}
subject to x0 = xinit,

xk+1 = Akxk +Bkuk +Bwk wk,

for k = 0, 1, . . . , N − 1,
(11)

for N → ∞, where xk ∈ Rn, uk ∈ Rnu , and
Q1, . . . , QN ∈ Rn×n and R0, . . . , RN−1 ∈ Rnu×nu are
given positive semidefinite matrices. Recall that, Q ∈ Rn×n
is a positive semidefinite matrix if xTQx ≥ 0 for every
x ∈ Rn, and ‖x‖Q =

√
xTQx in that case. For seizure

mitigation via TMS, we propose to use Qk = In×n,
c = 0n×1, and Rk = εInu×nu

with ε > 0, such that the
objective becomes largely to steer the total energy in the
expected value of the brain signals towards the smallest
amount possible. The quadratic term on the input, which
represents the stimulation signal induced in the brain via
TMS, is intended to add a penalization term for stimulating
the patient too harshly, since this may be unsafe, create
discomfort for the patient, or have harmful psychological
effects [35].

Problem (11) is often referred to as the
linear-quadratic-Gaussian (LQG) control problem [36],
and it may be solved offline and implemented in real time
through a feedback control strategy of the form

uk = Kkxk (k = 0, 1, . . . , N − 1), (12)

for some appropriate matrices K0, . . . ,KN−1 ∈ Rnu×n

(called feedback gain matrices) [37], which are functions of

x0. Furthermore, (11) can be written as an unconstrained
quadratic program (QP), i.e., the minimization of a function
f(x) = 1

2‖x‖
2
Q + cTx. Such problems can be efficiently

solved numerically, for instance, via the quadprog() func-
tion in MATLAB. In fact, even if we include additional linear
constraints on the state and input vectors, the problem will
remain a QP. In particular, we may consider constraints of
the form umin ≤ (uk)i ≤ umax for every time step k and
every input component indexed by i. This can be used to
efficiently ensure that our proposed TMS approach will only
ever administer safe voltage stimuli.

In model predictive control, the objective is to solve these
consecutive constrained finite-horizon LQG problems over a
moving horizon, in order to create additional robustness, as
compared to directly solving for N → ∞. More precisely,
at time step k, the proposed strategy involves solving the
problem

minimize
uk,...,uk+P−1

E

{
P∑
j=1

‖xk+j‖2Qk+j
+

P∑
j=1

cTk+jxk+j

+

P−1∑
j=0

‖uk+j‖2Rk+j

}
subject to xk = observed or estimated current state,

xk+j+1 = Ak+jxk+j +Bk+juk+j

+Bwk+jwk+j ,

for j = 0, 1, . . . , P − 1,

other linear constraints on xk+1, . . . , xk+P ,

uk, . . . , uk+P−1,
(13)

where P is called the prediction horizon, but it only deploys
the control strategy associated with the first M time steps
(referred to as the control horizon). Simply speaking, after
we reach the state xk+M−1, we update k with the value
k+M − 1 and recompute the new LQG solution. This way,
by design, there is a new layer of robustness that the solution
of an LQG (even for N →∞) does not offer by itself, since
the optimal strategy is constantly being re-evaluated based
on short-term control action implementation of a long-term
prediction [38].

IV. SIMULATION RESULTS

In what follows, we propose to illustrate the use of the
fractional-order model predictive control framework for TMS
in the context of annihilating or mitigating epileptic seizures
using real EEG data. We start by considering an epileptic
seizure captured by a linear FOS model whose parameters
are obtained through a system identification method using
real brainwave data. Then, we simulate three different stim-
ulation strategies: (i) an open-loop stimulation strategy; (ii)
an event-triggered open-loop strategy (i.e., once a certain
event, in this case the beginning of a seizure, is detected, a
short-term open-loop stimulation strategy is deployed); and
(iii) a closed-loop stimulation strategy based on our proposed
FOS-MPC approach.
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System Identification Through Parameter Estimation with
EEG data

First, we need to determine the parameters A and α
that model both spatial coupling and fractional exponents,
respectively, that craft the evolution of the state xk ∈ Rn in
the FOS model

∆αxk+1 = Axk + wk, (14)

with wk denoting additive white Gaussian noise (AWGN).
We will consider only n = 4 components in our state vector
xk with each one corresponding to the measurement obtained
from a single EEG microelectrode. To identify the parameters
A, α, and the covariance matrix Σw (assumed equal to the
diagonal matrix Σ = σ2

wI4×4 for simplicity) associated with
wk, we used the method proposed in [16]. For illustration
purposes, we consider the normalized (i.e., voltage units have
been scaled to the interval −1 to 1) EEG recordings 1-4 of
subject 11 from the CHB-MIT Scalp EEG database [39]. The
parameters obtained are as follows:

A =


0.0402 0.0604 −0.0040 −0.0450
0.0340 −0.0571 0.0742 0.0701
−0.0119 −0.0032 −0.0105 0.0078
−0.0335 0.0165 −0.0009 0.0453

 , (15a)

α =
[
0.6606 0.7973 1.0670 0.6977

]T
, (15b)

and σ2
w = 0.2. More precisely, we utilized a normalized

10-second sample during a period of ictal activity (i.e.,
activity during an epileptic seizure), sampled at 160 Hz.

Experiment 1: Open-Loop Electrical Neurostimulation

Based upon the identified parameters of the
system (14)–(15), we consider the following forced
FOS

∆αxk+1 = Axk +Buk + wk + dk, (16)

where dk denotes a disturbance term that can be understood
as a persistent neural activity incoming from nearby regions.
For the sake of our simulations, dk will be set as frequent
wavelet-like bursts of amplitude dk = 0.25 and dk = 1,
which occur in a disjoint manner at random points of time
according to Poisson counting processes with rates of 0.2 s
and 1 s, respectively.

Fig. 1. Simulated seizure is depicted (in blue) versus an attempted
controlled signal (in red) under an open-loop stimulation strategy (in
yellow).

Additionally, uk denotes the voltage stimulus signal be-
ing applied. For the sake of simplicity, we will assume

B = [1, 1, 1, 1]T, which corresponds to a stimulus that per-
turbs all the channels uniformly.

Several open-loop stimulation strategies were imple-
mented, which always entail uk to be determined without
information about the state of the system. Specifically, when
considering the previous model, we start actuation at the 4
second mark, when the EEG signal (blue) branches out into
two signals, one being the continuation of the original signal
without any stimulation, and the other being the electrically
stimulated version (red) of the signal through the open-loop
controlled stimulus (orange). Here, the input will consist of
1 s periods of sinusoidal activity of amplitude 0.5, frequency
16 Hz, phase 0, and consecutively followed by unstimulated
periods lasting 0.5 s.

As we can see in Fig. 1, this strategy is unable to steer the
evolution of the system towards normal activity. Specifically,
the controlled brainwaves seem to be almost unaffected,
which is consistently observed if we adopt slightly different
open-loop strategies (e.g., adopting a different waveform, as
it is in the case of a biphasic rectangular pulse). In fact,
we have observed that such open-loop control strategies
can induce the increase of activity and, at times, even
originate seizure-like activity. As a particular instance of
these findings, we re-identified the parameters in our system
based on inter-ictal data of the same subject as before. Next,
we considered a stimulation strategy as depicted in Fig. 2,
which lead to several periods of seizure-like activity which
would not have occurred if the original system was left to
evolve on its own.

Fig. 2. Seizure-like activity (in red) is induced by an open-loop stimulation
strategy (in yellow) of an otherwise regular activity depicted in blue.

Experiment 2: Event-Triggered Open-Loop Control

Whereas in the Experiment 1 we focused on open-loop
strategies that start at fully pre-specified instances of time,
in practice, neurostimulation devices such as those used
in TMS implement the so-called event-triggered open-loop
stimulation strategy. More specifically, the (open-loop) stim-
ulation strategy is only activated when a phenomenon of
interest is observed that can be described by the previously
obtained data. In what follows, we assumed that, when
activated due to the detection of seizure-like activity, the
same open-loop stimulation strategy as presented in Fig. 2
with twice the amplitude is deployed – see Fig. 3. In practice,
there are a variety of such seizure-like activity detectors
that can be considered (e.g., the line length feature that
measures the length of the line described by the activity
during a window of time [40]). Notwithstanding, we obtained
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a similar conclusion as when open-loop strategies were not
triggered by an event.

Fig. 3. Simulated seizure is depicted (in blue) versus an attempted
controlled signal (in red) under an event-triggered open-loop stimulation
strategy (in yellow).

Experiment 3: Closed-Loop Electrical Neurostimulation us-
ing MPC on FOS

Finally, we implemented our proposed TMS strategy using
MPC on the FOS models described earlier in this paper.
More precisely, for the cost function in (13), we utilized
Qk = 10In, Rk = Inu

, and ck = 0nu×1, to emphasize mini-
mizing the overall energy in the measured brainwaves, while
penalizing slightly for overly aggressive stimulation. Further-
more, we included a safety linear constraint of −1 ≤ uk ≤ 1.
Our predictive model was based on a (p = 4)−step (25
ms) MVAR predictive model approximation of the FOS
plant, with a (P = 32)−step (200 ms) prediction horizon
and (M = 8)−step (50 ms) control horizon.

Fig. 4. Simulated seizure is depicted (in blue) versus controlled signals (in
red) for all channels, under our proposed closed-loop stimulation strategy
(in yellow).

The results presented in Fig. 4 include all 4 controlled
channels controlled simultaneously, since failure to drive any
one of them towards a normal range would imply failure in
the seizure mitigation objective. We can see that the proposed
strategy using TMS achieves the desired goal and implicitly
provides us with a detector, given that it tends to provide
virtually no stimulation except during very brief periods of
time, at which point only (time-varying) impulse-like stimuli
are deployed.

Remark 1. Any control scheme that requires computa-
tionally demanding large-scale optimization methods to be
involved, will, in turn, require some form of approximation
in order to increase computational efficiency and to enable
true real-time control of the system. As such, it is imperative
to understand the trade-offs in computational performance

involved when using such approximations, which naturally
depend from system to system.

Remark 2. The actual dynamics of the brain are highly
nonlinear and time-varying. For this reason, it is crucial to
re-identify the fractional-order parameters in our predictive
model in a real-life implementation of our proposed strategy.
An empirical analysis of parameter tuning via trial and error
suggests that an LTI predictive model approximation of the
FOS plant with non-augmented state (i.e., an MVAR(p)
predictive model with p = 1) is inadequate to achieve
satisfactory levels of performance in the context of seizure
mitigation. However, it also suggests that the memory of the
predictive model can be limited to p = 8 past time steps
(ranging 0.5 ms) for the conducted experiments. Anything
beyond that led to negligible gains in performance at a high
computational cost.

Remark 3. It should also be noted that in the proposed
FOS-MPC stimulation strategy, there are still some design
parameters that need to be manually calibrated, such as the
prediction horizon P , the control horizon M , the memory
horizon p, and the input energy penalization weight ε ≥ 0.
Notwithstanding these considerations, there is a considerable
theoretical foundation dedicated to studying the design of
MPC algorithms that achieve stability, robustness, and other
performance guarantees [41]–[44]. This body of results may
be used to guide and systematize the parameter calibration
stage under a sound and justifiable basis.

V. CONCLUSIONS AND FUTURE WORK

We presented a methodological framework towards
real-time feedback control with constraints for neurophys-
iological systems. Specifically, we pedagogically introduced
a model predictive control (MPC) approach when the neuro-
physiological process can be modeled by a fractional-order
system. In doing so, we focused on TMS for epilepsy, and
using systems with seizure-like characteristics, we showed
that the stimulation strategies obtained by the proposed
framework enabled us to annihilate and mitigate epileptic
seizures. Although we have focused mainly on TMS for
epilepsy, we believe that the proposed framework can be
readily applied to other forms of neurostimulation with an
adequate change in the optimization problem (i.e., in the
objective function and constraints).
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[27] R. Nardone, Y. Höller, F. Tezzon, M. Christova, K. Schwenker, S. Go-
laszewski, E. Trinka, and F. Brigo, “Neurostimulation in Alzheimer’s
disease: from basic research to clinical applications,” Neurological
Sciences, vol. 36, no. 5, pp. 689–700, 2015.

[28] L. Marangell, M. Martinez, R. Jurdi, and H. Zboyan, “Neurostim-
ulation therapies in depression: a review of new modalities,” Acta
Psychiatrica Scandinavica, vol. 116, no. 3, pp. 174–181, 2007.

[29] B. H. Bewernick, R. Hurlemann, A. Matusch, S. Kayser, C. Grubert,
B. Hadrysiewicz, N. Axmacher, M. Lemke, D. Cooper-Mahkorn,
M. X. Cohen, et al., “Nucleus accumbens deep brain stimulation
decreases ratings of depression and anxiety in treatment-resistant
depression,” Biological Psychiatry, vol. 67, no. 2, pp. 110–116, 2010.

[30] V. Sturm, D. Lenartz, A. Koulousakis, H. Treuer, K. Herholz, J. C.
Klein, and J. Klosterkötter, “The nucleus accumbens: a target for deep-
brain stimulation in obsessive-compulsive and anxiety disorders,” in
Proceedings of the Medtronic Forum for Neuroscience and Neuro-
Technology 2005. Springer, 2007, pp. 62–67.
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